Determination of afferent fibers mediating oligosynaptic group I input to cat medial gastrocnemius motoneurons. 1985

R K Powers, and M D Binder

In the experiments described in the preceding paper electrical stimulation of the quadriceps (QUAD), medial tibial (MTIB), and flexor digitorum and hallucis longus (FDHL) muscle nerves was used to evoke oligosynaptic group I postsynaptic potentials (PSPs) in medial gastrocnemius (MG) motoneurons. In the present study, we attempted to specify the types of afferent fibers which mediate that oligosynaptic activity (FDHL to MG only). In one series of experiments, isolated single flexor digitorum longus (FDL) and flexor hallucis longus (FHL) afferents were identified as Ia, Ib, or group II fibers according to their conduction velocities, responses to muscle contraction, and mechanical thresholds to small amplitude triangular stretches applied to the parent muscles. We also determined the electrical thresholds of the identified afferent fibers by applying graded electrical stimulation to their muscle nerve. These results were used as criteria to define the types of afferents that mediated the electrically and stretch-evoked FDHL oligosynaptic PSPs recorded in MG motoneurons during a second series of experiments. The amplitudes of the oligosynaptic PSPs evoked in MG motoneurons increased as the strength of the electrical stimuli applied to the FDHL muscle nerves was raised to activate greater numbers of Ia- and Ib-fibers, but showed little or no additional increase when the stimulus intensity was raised further to include the majority of group II fibers. On this basis, a significant contribution by group II fibers to these oligosynaptic PSPs was considered unlikely. Simultaneous electrical activation of both Ia- and Ib-fibers produced distinct oligosynaptic PSPs in MG motoneurons, but these were likely due primarily to Ib-afferent activity, since selective activation of Ia-afferents (by stretch) rarely produced oligosynaptic PSPs in the same motoneurons. There was, however, evidence for some Ia contribution to these oligosynaptic PSPs. This is consistent with the demonstration that Ia- and Ib-afferent fibers converge onto common interneurons and that selective activation of Ia-fibers can produce PSPs similar to those evoked by concurrent stimulation of Ia- and Ib-fibers. On the basis of the present results and those of several related studies it is argued that the oligosynaptic PSPs evoked in MG motoneurons by submaximal group I stimulation of the FDHL, MTIB, or QUAD muscle nerves can be ascribed predominantly to the activation of Ib-afferent fibers, with only minimal Ia and probably no group II contribution.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000870 Anterior Horn Cells MOTOR NEURONS in the anterior (ventral) horn of the SPINAL CORD which project to SKELETAL MUSCLES. Anterior Horn Neurons,Neurons, Anterior Horn,Neurons, Ventral Horn,Ventral Horn Cells,Ventral Horn Neurons,Anterior Horn Cell,Anterior Horn Neuron,Cell, Anterior Horn,Cell, Ventral Horn,Cells, Anterior Horn,Cells, Ventral Horn,Neuron, Anterior Horn,Neuron, Ventral Horn,Ventral Horn Cell,Ventral Horn Neuron

Related Publications

R K Powers, and M D Binder
December 1981, Journal of neurophysiology,
R K Powers, and M D Binder
January 1991, Journal of applied physiology (Bethesda, Md. : 1985),
R K Powers, and M D Binder
October 1989, Brain research. Developmental brain research,
R K Powers, and M D Binder
October 1985, Neuroscience letters,
R K Powers, and M D Binder
April 1993, The Journal of comparative neurology,
R K Powers, and M D Binder
February 1983, Experimental neurology,
Copied contents to your clipboard!