Membrane assembly in retinal photoreceptors. II. Immunocytochemical analysis of freeze-fractured rod photoreceptor membranes using anti-opsin antibodies. 1985

D M Defoe, and J C Besharse

We have used a cytochemical technique for labeling freeze-fractured tissues (Pinto da Silva, P., C. Parkison, and N. Dwyer (1981) Proc. Natl. Acad. Sci. U.S.A. 78: 343-347) to examine the distribution of immunoreactive opsin in rod photoreceptor membranes. Aldehyde-fixed retinas of African clawed frogs (Xenopus laevis) embedded in a cross-linked protein matrix were frozen and fractured at -196 degrees C, then thawed and labeled with biotinylated sheep anti-cow opsin IgG followed by avidin-ferritin. In thin sections of plastic-embedded retinas, rod outer segment (ROS) disc membranes exposed by fracturing bound specific antibody intensely and relatively uniformly. However, they differed from membranes of the inner segment as well as those of erythrocytes in that protoplasmic face leaflets did not assume an interrupted bilayer appearance and disc exoplasmic face leaflets were apparently lost during thawing. The disposition of opsin immunoreactivity in the cell membrane was highly asymmetric. Although ROS plasma membranes from which discs are elaborated labeled heavily with anti-opsin after cleavage, fractures passing along inner segment plasma membranes bound very little antibody. In cross-fractures exposing inner segment cytoplasm, we found specific labeling of Golgi complex elements, as well as both perimitochondrial and periciliary vesicles. The latter are presumed to be the vehicle shuttling newly synthesized membrane to the ROS for disc assembly. These results suggest that opsin-containing membrane is sorted out within the cell, being transported from synthetic sites to the immediate periciliary zone where localized insertion into the cell membrane takes place. Furthermore, the close correspondence of the present immunocytochemical analysis with the distribution of opsin deduced from prior quantitative freeze-fracture analysis (Besharse, J. C., and K. H. Pfenninger (1980) J. Cell Biol. 87: 451-463) offers the possibility that fracture-label may be generally useful for study of patterned membrane topography in neuronal cells.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005136 Eye Proteins PROTEINS derived from TISSUES of the EYE. Proteins, Eye
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D M Defoe, and J C Besharse
January 1987, Investigative ophthalmology & visual science,
D M Defoe, and J C Besharse
May 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
D M Defoe, and J C Besharse
January 1980, Biofizika,
D M Defoe, and J C Besharse
July 1983, Investigative ophthalmology & visual science,
D M Defoe, and J C Besharse
December 1990, Development (Cambridge, England),
Copied contents to your clipboard!