Central nervous system tumors in 2-year rat carcinogenicity studies: perspectives on human risk assessment. 2019

Aida Sacaan, and Stephane Thibault, and K Nasir Khan
Pfizer Inc. Drug Safety Research and Development.

Rodent in vivo carcinogenicity bioassays are required for human risk assessment and have been utilized in this capacity for decades. Accordingly, there is an abundance of data that could be accessed and analyzed to better understand the translatability of xenobiotic-induced rodent tumors to human risk assessment. In the past decade, various groups have published assessments of the value garnered by these life-time rodent studies. Results and recommendations from the International Council for Harmonization Expert Working Group (ICH-S1 EWG) on the predictability of the current testing paradigm and proposal for an integrated approach to human carcinogenicity risk assessment are pending. Central nervous system (CNS) tumors in rats are rare and translatability to human remains unknown. This review focuses on microglial cell tumors (MCT) of the CNS in rats including its classification, nomenclature, incidence and translatability to human risk assessment. Based on emerging immunohistochemistry (IHC) characterization, glial tumors previously thought of astrocytic origin are more likely MCTs. These may be considered rodent specific and glucose dysregulation may be one component contributing to their formation. Based on review of the literature, MCTs are rarely diagnosed in humans, thus this tumor type may be rat-specific. We propose to include MCTs as a tumor type in revised International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) classification and all glial tumors to be classified as MCTs unless proven otherwise by IHC.

UI MeSH Term Description Entries
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001681 Biological Assay A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc. Bioassay,Assay, Biological,Assays, Biological,Biologic Assay,Biologic Assays,Assay, Biologic,Assays, Biologic,Bioassays,Biological Assays
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D015197 Carcinogenicity Tests Tests to experimentally measure the tumor-producing/cancer cell-producing potency of an agent by administering the agent (e.g., benzanthracenes) and observing the quantity of tumors or the cell transformation developed over a given period of time. The carcinogenicity value is usually measured as milligrams of agent administered per tumor developed. Though this test differs from the DNA-repair and bacterial microsome MUTAGENICITY TESTS, researchers often attempt to correlate the finding of carcinogenicity values and mutagenicity values. Tumorigenicity Tests,Carcinogen Tests,Carcinogenesis Tests,Carcinogenic Activity Tests,Carcinogenic Potency Tests,Carcinogen Test,Carcinogenesis Test,Carcinogenic Activity Test,Carcinogenic Potency Test,Carcinogenicity Test,Potency Test, Carcinogenic,Potency Tests, Carcinogenic,Test, Carcinogen,Test, Carcinogenesis,Test, Carcinogenic Activity,Test, Carcinogenic Potency,Test, Carcinogenicity,Test, Tumorigenicity,Tests, Carcinogen,Tests, Carcinogenesis,Tests, Carcinogenic Activity,Tests, Carcinogenic Potency,Tests, Carcinogenicity,Tests, Tumorigenicity,Tumorigenicity Test
D016543 Central Nervous System Neoplasms Benign and malignant neoplastic processes that arise from or secondarily involve the brain, spinal cord, or meninges. CNS Neoplasm,CNS Neoplasms,Central Nervous System Neoplasm,Central Nervous System Tumor,Neoplasms, Central Nervous System,Primary Central Nervous System Neoplasm,Central Nervous System Neoplasms, Primary,Central Nervous System Tumors,Primary Central Nervous System Neoplasms,Tumors, Central Nervous System,Neoplasm, CNS,Neoplasms, CNS
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018570 Risk Assessment The qualitative or quantitative estimation of the likelihood of adverse effects that may result from exposure to specified health hazards or from the absence of beneficial influences. (Last, Dictionary of Epidemiology, 1988) Assessment, Risk,Benefit-Risk Assessment,Risk Analysis,Risk-Benefit Assessment,Health Risk Assessment,Risks and Benefits,Analysis, Risk,Assessment, Benefit-Risk,Assessment, Health Risk,Assessment, Risk-Benefit,Benefit Risk Assessment,Benefit-Risk Assessments,Benefits and Risks,Health Risk Assessments,Risk Analyses,Risk Assessment, Health,Risk Assessments,Risk Benefit Assessment,Risk-Benefit Assessments

Related Publications

Aida Sacaan, and Stephane Thibault, and K Nasir Khan
December 2012, Regulatory toxicology and pharmacology : RTP,
Aida Sacaan, and Stephane Thibault, and K Nasir Khan
September 2004, Congenital anomalies,
Aida Sacaan, and Stephane Thibault, and K Nasir Khan
July 1989, Journal of neuro-oncology,
Aida Sacaan, and Stephane Thibault, and K Nasir Khan
January 1982, Brain research bulletin,
Aida Sacaan, and Stephane Thibault, and K Nasir Khan
January 1987, Journal of neuro-oncology,
Aida Sacaan, and Stephane Thibault, and K Nasir Khan
January 2005, Cancer chemotherapy and biological response modifiers,
Aida Sacaan, and Stephane Thibault, and K Nasir Khan
March 1987, Clinics in laboratory medicine,
Aida Sacaan, and Stephane Thibault, and K Nasir Khan
October 2007, Mayo Clinic proceedings,
Aida Sacaan, and Stephane Thibault, and K Nasir Khan
August 1995, Seminars in veterinary medicine and surgery (small animal),
Aida Sacaan, and Stephane Thibault, and K Nasir Khan
February 2008, Pediatric clinics of North America,
Copied contents to your clipboard!