A mesial-to-lateral dissociation for orthographic processing in the visual cortex. 2019

Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; florence.bouhali@gmail.com.

Efficient reading requires a fast conversion of the written word to both phonological and semantic codes. We tested the hypothesis that, within the left occipitotemporal cortical regions involved in visual word recognition, distinct subregions harbor slightly different orthographic codes adapted to those 2 functions. While the lexico-semantic pathway may operate on letter or open-bigram information, the phonological pathway requires the identification of multiletter graphemes such as "ch" or "ou" in order to map them onto phonemes. To evaluate the existence of a specific stage of graphemic encoding, 20 adults performed lexical decision and naming tasks on words and pseudowords during functional MRI. Graphemic encoding was facilitated or disrupted by coloring and spacing the letters either congruently with multiletter graphemes (ch-ai-r) or incongruently with them (c-ha-ir). This manipulation affected behavior, primarily during the naming of pseudowords, and modulated brain activity in the left midfusiform sulcus, at a site medial to the classical visual word form area (VWFA). This putative grapheme-related area (GRA) differed from the VWFA in being preferentially connected functionally to dorsal parietal areas involved in letter-by-letter reading, while the VWFA showed effects of lexicality and spelling-to-sound regularity. Our results suggest a partial dissociation within left occipitotemporal cortex: the midfusiform GRA would encode orthographic information at a sublexical graphemic level, while the lateral occipitotemporal VWFA would contribute primarily to direct lexico-semantic access.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008606 Mental Processes Conceptual functions or thinking in all its forms. Information Processing, Human,Human Information Processing
D011932 Reading Acquiring information from text.
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
September 2018, Brain structure & function,
Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
July 2012, Neuropsychologia,
Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
May 2020, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
October 1990, Cognitive psychology,
Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
November 1981, Psychological bulletin,
Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
February 2024, Nature neuroscience,
Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
January 2001, Neurology,
Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
June 2006, Epilepsy & behavior : E&B,
Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
March 1991, Proceedings of the National Academy of Sciences of the United States of America,
Florence Bouhali, and Zoé Bézagu, and Stanislas Dehaene, and Laurent Cohen
April 2014, Psychological science,
Copied contents to your clipboard!