Interference of Hsp27 Results in Apoptosis Induced by Photodamage via Regulation of Subcellular Localization of p21 in Immortalized Human Keratinocytes. 2019

Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland).

BACKGROUND Owing to the increased incidence of photodermatosis caused by ultraviolet light in recent years, it is necessary to clarify the mechanisms potential photodamage to the skin and reveal possible therapeutic targets. Heat shock protein 27 (Hsp27) is well known for suppressing apoptosis. The aim of present study was to elucidate possible photoprotective mechanism between Hsp27 and p21 on ultraviolet B (UVB)-induced photodamage. MATERIAL AND METHODS The Hsp27 gene was interfered to assess the expression of its downstream effectors, cell apoptosis, and cell proliferation ability. The cell apoptosis was tested using flow cytometry method. The cell proliferation ability was tested using Cell Counting Kit-8 (CCK-8) assay. The expression of protein was tested using western-blotting method. The expression of mRNA was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The subcellular localization was elucidated using immunofluorescence. RESULTS Hsp27 knockdown decreased cell viability and increased the incidence of UVB-induced apoptosis. Compared with control group, activation of phosphorylated-Akt (p-Akt)-dependent pathway resulted in the nuclear accumulation of p21 and suppression of cell proliferation, while promoting apoptosis in Hsp27 knockdown group. In addition, Hsp27 knockdown increased p53 expression and the Bax: Bcl-2 ratio, which further accelerated the apoptotic process. CONCLUSIONS These findings complemented the mechanism of skin photodamage and demonstrated the photoprotective mechanisms of Hsp27 in HaCaT cells, which might implicate a potential therapeutic target of photodamage and photodermatosis.

UI MeSH Term Description Entries
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53

Related Publications

Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
September 2022, Experimental gerontology,
Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
December 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
March 2003, The Journal of biological chemistry,
Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
December 2000, Cellular signalling,
Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
February 2006, Molecular cancer therapeutics,
Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
November 2021, Experimental gerontology,
Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
January 1982, Acta dermato-venereologica. Supplementum,
Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
June 2000, Carcinogenesis,
Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
January 2008, Photochemistry and photobiology,
Chuan Liu, and Xin Huang, and Ping Wang, and Yun Pan, and Di Cao, and Yi-Yi Liu, and Ai-Jun Chen
August 1999, The Journal of biological chemistry,
Copied contents to your clipboard!