Electrospinning Nanofibers from Chitosan/Hyaluronic Acid Complex Coacervates. 2019

Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
Department of Chemical Engineering , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States.

Electrospun biopolyelectrolyte nanofibers hold potential for use in a range of biomedical applications, but eliminating toxic chemicals involved in their production remains a key challenge. In this study, we successfully electrospun nanofibers from an aqueous complex coacervate solution composed of chitosan and hyaluronic acid. Experimentally, we investigated the effect of added salt and electrospinning apparatus parameters, such as how applied voltage affected fiber formation. We also studied how the addition of alcohol cosolvents affected the properties of the coacervate solution and the resulting nanofibers. Overall, we observed a trade-off in how the addition of salt and alcohol affected the phase behavior and rheology of the coacervates and, consequently, the size of the resulting fibers. While salt served to weaken electrostatic associations within the coacervate and decrease the precursor solution viscosity, the addition of alcohol lowered the dielectric constant of the system and strengthened these interactions. We hypothesize that the optimized concentration of alcohol accelerated the solvent evaporation during the electrospinning process to yield desirable nanofiber morphology. The smallest average nanofiber diameter was determined to be 115 ± 30 nm when coacervate samples were electrospun using an aqueous solvent containing 3 wt % ethanol and an applied voltage of 24 kV. These results demonstrate a potentially scalable strategy to manufacture electrospun nanofibers from biopolymer complex coacervates that eliminate the need for toxic solvents and could enable the use of these materials across a range of biomedical applications.

UI MeSH Term Description Entries
D011142 Polyvinyl Alcohol A polymer prepared from polyvinyl acetates by replacement of the acetate groups with hydroxyl groups. It is used as a pharmaceutic aid and ophthalmic lubricant as well as in the manufacture of surface coatings artificial sponges, cosmetics, and other products. Liquifilm Tears,Polyviol,Alcohol, Polyvinyl,Tears, Liquifilm
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006820 Hyaluronic Acid A natural high-viscosity mucopolysaccharide with alternating beta (1-3) glucuronide and beta (1-4) glucosaminidic bonds. It is found in the UMBILICAL CORD, in VITREOUS BODY and in SYNOVIAL FLUID. A high urinary level is found in PROGERIA. Amo Vitrax,Amvisc,Biolon,Etamucine,Healon,Hyaluronan,Hyaluronate Sodium,Hyvisc,Luronit,Sodium Hyaluronate,Acid, Hyaluronic,Hyaluronate, Sodium,Vitrax, Amo
D000071228 Polyelectrolytes Naturally occurring or artificially made water-soluble POLYMERS whose repeating units are ionizable. Polyelectrolytes demonstrate attributes that are typical of salts, such as electrical conductivity, and typical of polymers, such as viscosity. Conjugated Polyelectrolyte,Polyelectrolyte,Conjugated Polyelectrolytes,Polyelectrolyte, Conjugated,Polyelectrolytes, Conjugated
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries
D014783 Viscosity The resistance that a gaseous or liquid system offers to flow when it is subjected to shear stress. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Viscosities
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide
D048271 Chitosan Deacetylated CHITIN, a linear polysaccharide of deacetylated beta-1,4-D-glucosamine. It is used in HYDROGEL and to treat WOUNDS. Poliglusam
D057139 Nanofibers Submicron-sized fibers with diameters typically between 50 and 500 nanometers. The very small dimension of these fibers can generate a high surface area to volume ratio, which makes them potential candidates for various biomedical and other applications. Nanofiber

Related Publications

Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
January 2012, Carbohydrate polymers,
Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
December 2022, Biomolecules,
Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
October 2018, Biomacromolecules,
Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
January 2022, International journal of biological macromolecules,
Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
February 2012, Biomacromolecules,
Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
June 2012, Journal of nanoscience and nanotechnology,
Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
October 2018, International journal of biological macromolecules,
Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
October 2014, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
Juanfeng Sun, and Sarah L Perry, and Jessica D Schiffman
January 2009, Recent patents on nanotechnology,
Copied contents to your clipboard!