Dependence of adenosine triphosphatase activity of rabbit psoas muscle fibres and myofibrils on substrate concentration. 1985

H Glyn, and J Sleep

The rate of hydrolysis of adenosine triphosphate (ATP) by chemically skinned rabbit muscle fibres was measured as a function of Mg ATP concentration in the range 5 microM to 5 mM. Pyruvate kinase and lactate dehydrogenase were used to link adenosine diphosphate formation to oxidation of nicotinamide adenine dinucleotide which was followed by the change in absorption at 340 nm. The ATPase rate of a fully activated fibre (pCa = 4.5) increased monotonically with Mg ATP concentration in a manner that could be readily fitted by a hyperbola. At 15 degrees C, pH 7 and an ionic strength of 0.2 M the rate at saturating Mg ATP (Vm) was 1.78 +/- 0.2 s-1 per myosin head (mean +/- S.D.; n = 6) and the Mg ATP concentration needed for half the maximal rate (Km) was 16.6 +/- 2 microM. The ATPase of fibres that had been stabilized by cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide (EDC) was also investigated. Cross-linking did not significantly affect the Vm or Km and these fibres proved useful for investigating the adequacy of the pyruvate kinase activity for regenerating hydrolysed ATP. Myofibrils were cross-linked with EDC or glutaraldehyde to prevent shortening. Their ATPase properties were investigated: the values of Vm were 0.85 +/- 0.18 (mean +/- S.D.; n = 14) and 0.82 +/- 0.05 s-1 (n = 6) and of Km were 18.0 +/- 2.8 and 12.4 +/- 2.4 microM respectively. The values of Vm and Km for EDC cross-linked myofibrils were fairly insensitive to ionic strength, the Km decreasing 40% and the Vm increasing 50% for a change from 0.2 to 0.3 M. This slight dependence on ionic strength is considered in relation to the ionic strength dependence of the elementary rate constants of the actomyosin subfragment-1 ATPase cycle.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005022 Ethyldimethylaminopropyl Carbodiimide Carbodiimide cross-linking reagent. 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide,3-(3-Dimethylaminopropyl)-1-Ethylcarbodiimide,EDAP-Carbodiimide,Carbodiimide, Ethyldimethylaminopropyl,EDAP Carbodiimide
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Glyn, and J Sleep
December 1975, Canadian journal of biochemistry,
H Glyn, and J Sleep
July 1984, Journal of molecular biology,
Copied contents to your clipboard!