Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. 2019

Kaoru Sugasawa
Biosignal Research Center, and Graduate School of Science, Kobe University, Hyogo, Japan. Electronic address: ksugasawa@garnet.kobe-u.ac.jp.

Nucleotide excision repair (NER) is a versatile DNA repair pathway that eliminates various helix-distorting base lesions such as ultraviolet (UV)-induced photolesions. Several recessive human disorders, such as xeroderma pigmentosum (XP), are caused by hereditary defects in NER, implying that the pathway plays critical roles in suppressing diverse pathogenic processes, including carcinogenesis. In general, discrimination of lesion sites from intact DNA, which is present in vast excess, is a key determinant of the overall efficiency of DNA repair. In mammalian cells, global genomic NER lesion recognition is initiated by the XPC protein complex, which achieves broad DNA-binding specificity by sensing destabilized base pairs rather than lesions per se. To avert unnecessary incisions at lesion-free sites, and thereby ensure the fidelity of the repair system, transcription factor IIH and the XPA protein then verify the presence of relevant lesions at suspicious sites bound by XPC. In the case of UV-induced photolesions, a specialized lesion sensor called UV-damaged DNA-binding protein (UV-DDB) contributes to efficient lesion recognition and the recruitment of XPC to lesion sites. The ubiquitin-proteasome system plays a crucial role in the handoff of lesions from UV-DDB to XPC and the subsequent NER process. In addition, recognition of lesions targeted by global genomic NER is intricately regulated by higher-order chromatin structures, which play distinct roles depending on the type of lesion.

UI MeSH Term Description Entries
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D046988 Proteasome Endopeptidase Complex A large multisubunit complex that plays an important role in the degradation of most of the cytosolic and nuclear proteins in eukaryotic cells. It contains a 700-kDa catalytic sub-complex and two 700-kDa regulatory sub-complexes. The complex digests ubiquitinated proteins and protein activated via ornithine decarboxylase antizyme. 20S Proteasome,Ingensin,Macropain,Macroxyproteinase,Multicatalytic Endopeptidase Complex,Multicatalytic Proteinase,Prosome,Proteasome,Complex, Multicatalytic Endopeptidase,Complex, Proteasome Endopeptidase,Endopeptidase Complex, Multicatalytic,Endopeptidase Complex, Proteasome,Proteasome, 20S,Proteinase, Multicatalytic
D051758 Transcription Factor TFIIH A general transcription factor that is involved in basal GENETIC TRANSCRIPTION and NUCLEOTIDE EXCISION REPAIR. It consists of nine subunits including ATP-DEPENDENT DNA HELICASES; CYCLIN H; and XERODERMA PIGMENTOSUM GROUP D PROTEIN. TFIIH Transcription Factor,BTF2 Transcription Factor,Basic Transcription Factor 2,Transcription Factor BTF2,Transcription Factor IIH,BTF2, Transcription Factor,TFIIH, Transcription Factor,Transcription Factor, BTF2,Transcription Factor, TFIIH
D051760 Xeroderma Pigmentosum Group A Protein A ZINC FINGER MOTIF protein that recognizes and interacts with damaged DNA. It is a DNA-binding protein that plays an essential role in NUCLEOTIDE EXCISION REPAIR. Mutations in this protein are associated with the most severe form of XERODERMA PIGMENTOSUM. XPA Nucleotide Excision Repair Protein,XPA Repair Protein,Xeroderma Pigmentosum Group A Complementing Protein,Xeroderma Pigmentosum-A Protein,Xeroderma Pigmentosum A Protein
D025801 Ubiquitin A highly conserved 76-amino acid peptide universally found in eukaryotic cells that functions as a marker for intracellular PROTEIN TRANSPORT and degradation. Ubiquitin becomes activated through a series of complicated steps and forms an isopeptide bond to lysine residues of specific proteins within the cell. These "ubiquitinated" proteins can be recognized and degraded by proteosomes or be transported to specific compartments within the cell. APF-1,ATP-Dependent Proteolysis Factor 1,HMG-20,High Mobility Protein 20,Ubiquitin, Human,ATP Dependent Proteolysis Factor 1,Human Ubiquitin

Related Publications

Kaoru Sugasawa
January 2000, Cold Spring Harbor symposia on quantitative biology,
Kaoru Sugasawa
August 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Kaoru Sugasawa
February 2012, Current opinion in structural biology,
Copied contents to your clipboard!