Characterization of the translocation breakpoint in a patient with Philadelphia positive, bcr negative acute lymphoblastic leukaemia. 1988

M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
Leukaemia Research Fund Centre, Institute of Cancer Research, Chester Beatty Laboratories, London, UK.

Approximately 5% of children and 10-20% of adults with acute lymphoblastic leukaemia (ALL) have a chromosome translocation t(9;22) which at the cytogenetic level appears identical to that in chronic myeloid leukaemia (CML). The t(9;22) translocation was first recognised in CML patients by its 22q- or Philadelphia (Ph) chromosome. While all Ph positive CML patients so far described have a chromosome 22 breakpoint within the breakpoint cluster region (bcr) located in the 3' part of the phl gene, only some Ph positive ALL patients have breakpoints in bcr. We have cloned the breakpoint of the 9q+ chromosome from the DNA of a Ph positive ALL patient in whom there is no breakpoint in the bcr. The non-chromosome 9 sequences of the breakpoint region are shown to be derived from chromosome 22. The breakpoint in chromosome 22 is shown to be the first intron of the phl gene about 66kb upstream of the bcr. Using probes from this intron, rearrangements were detected in the DNA of two out of twelve additional Ph positive, bcr negative ALL patients.

UI MeSH Term Description Entries
D007945 Leukemia, Lymphoid Leukemia associated with HYPERPLASIA of the lymphoid tissues and increased numbers of circulating malignant LYMPHOCYTES and lymphoblasts. Leukemia, Lymphocytic,Lymphocytic Leukemia,Lymphoid Leukemia,Leukemias, Lymphocytic,Leukemias, Lymphoid,Lymphocytic Leukemias,Lymphoid Leukemias
D010677 Philadelphia Chromosome An aberrant form of human CHROMOSOME 22 characterized by translocation of the distal end of chromosome 9 from 9q34, to the long arm of chromosome 22 at 22q11. It is present in the bone marrow cells of 80 to 90 per cent of patients with chronic myelocytic leukemia (LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE). Ph1 Chromosome,Ph 1 Chromosome,1 Chromosomes, Ph,Chromosome, Ph 1,Chromosome, Ph1,Chromosome, Philadelphia,Chromosomes, Ph 1,Chromosomes, Ph1,Ph 1 Chromosomes,Ph1 Chromosomes
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002892 Chromosomes, Human, Pair 22 A specific pair of GROUP G CHROMOSOMES of the human chromosome classification. Chromosome 22
D002899 Chromosomes, Human, Pair 9 A specific pair of GROUP C CHROMSOMES of the human chromosome classification. Chromosome 9
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014178 Translocation, Genetic A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome. Chromosomal Translocation,Translocation, Chromosomal,Chromosomal Translocations,Genetic Translocation,Genetic Translocations,Translocations, Chromosomal,Translocations, Genetic

Related Publications

M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
January 1990, Genes, chromosomes & cancer,
M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
August 2000, British journal of haematology,
M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
June 1997, British journal of haematology,
M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
March 1991, Leukemia,
M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
September 2000, British journal of haematology,
M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
October 1995, British journal of haematology,
M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
August 2005, British journal of haematology,
M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
December 1986, Blood,
M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
December 2023, Hematology (Amsterdam, Netherlands),
M J van der Feltz, and M K Shivji, and G Grosveld, and L M Wiedemann
January 2008, Acta haematologica,
Copied contents to your clipboard!