Release of alkaline phosphatase from human osteosarcoma cells by phosphatidylinositol phospholipase C: effect of tunicamycin. 1988

T Nakamura, and K Nakamura, and R A Stinson
Department of Pathology, University of Alberta, Edmonton, Canada.

Alkaline phosphatase (orthophosphoric-monoester phosphohydrolase [alkaline optimum], EC 3.1.3.1) expressed in two human osteosarcoma cell lines (Saos-2 and KTOO5) in culture was the tissue nonspecific type and was released from the plasma membrane by phosphatidylinositol (PI) phospholipase C. Despite a difference of 10-fold between the two cell lines in the amount of alkaline phosphatase expressed, the phospholipase solubilized nearly all of the phosphatase from resuspended cells of the two lines. Alkaline phosphatase released with Nonidet-P40 from Saos-2 cells had a Mr of 445,000 by gradient gel electrophoresis in the absence of detergent; that released by PI-phospholipase C was 200,000. The subunit Mr of both solubilized forms was 86,000. Thus, tetrameric alkaline phosphatase in the membrane is attached by a PI-glycan moiety and is converted to dimers when released by PI-phospholipase C. Tunicamycin treatment of Saos-2 cells in culture affected the release of alkaline phosphatase by a high concentration of PI-phospholipase C, but not by a low concentration; both the rate and extent of release were lower from treated cells. However, the enzyme released from the treated cells was in two forms with different molecular weights; it seems that both glycosylated and nonglycosylated dimers were transported to the cell surface and incorporated into the plasma membrane. Glycosylation does not appear to be necessary for alkaline phosphatase to be anchored in the membrane via PI.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D012516 Osteosarcoma A sarcoma originating in bone-forming cells, affecting the ends of long bones. It is the most common and most malignant of sarcomas of the bones, and occurs chiefly among 10- to 25-year-old youths. (From Stedman, 25th ed) Sarcoma, Osteogenic,Osteogenic Sarcoma,Osteosarcoma Tumor,Osteogenic Sarcomas,Osteosarcoma Tumors,Osteosarcomas,Sarcomas, Osteogenic,Tumor, Osteosarcoma,Tumors, Osteosarcoma
D014415 Tunicamycin An N-acetylglycosamine containing antiviral antibiotic obtained from Streptomyces lysosuperificus. It is also active against some bacteria and fungi, because it inhibits the glucosylation of proteins. Tunicamycin is used as tool in the study of microbial biosynthetic mechanisms.

Related Publications

T Nakamura, and K Nakamura, and R A Stinson
October 1977, The Biochemical journal,
T Nakamura, and K Nakamura, and R A Stinson
August 2014, Indian journal of biochemistry & biophysics,
T Nakamura, and K Nakamura, and R A Stinson
January 1985, Toxicon : official journal of the International Society on Toxinology,
T Nakamura, and K Nakamura, and R A Stinson
August 1988, The Journal of clinical investigation,
T Nakamura, and K Nakamura, and R A Stinson
January 1990, Clinica chimica acta; international journal of clinical chemistry,
T Nakamura, and K Nakamura, and R A Stinson
June 1992, Comparative biochemistry and physiology. B, Comparative biochemistry,
Copied contents to your clipboard!