The maturational status of thalamocortical and callosal connections of visual areas V1 and V2 in the newborn monkey. 1988

C Dehay, and H Kennedy
Laboratoire de Neuropsychologie Expérimentale, INSERM-Unité 94, Bron, France.

Cytochrome oxidase (CytOx) is known to preferentially stain those regions of the visual cortex which receive direct projections from the thalamus. The pattern of CytOx stain has been used to investigate the maturation of thalamic input to areas V1 and V2 in the newborn monkey. In both areas, the intensity of CytOx activity was similar in newborns and adults. The distribution of CytOx in area V2 was not found to vary with age. In area V1, the only difference in CytOx activity in newborns was a relative immaturity of staining in layer 4C. The callosal connections of visual areas V1 and V2 were investigated by the axonal transport of wheat germ agglutinin conjugated to horseradish peroxidase and free horseradish peroxidase. In the adult, V1 was found to be reciprocally callosally connected for a distance of 1-2.5 mm from the V1/V2 border, whilst V2 was connected for a distance of 3-8 mm from the border. In both areas, callosal connections showed a certain degree of clustering, particularly in V2 which contained 97-98% of the total number of callosal connections of these two areas. In the newborn, the number, tangential extent and clustered distribution of callosal connections were as in the adult. In the newborn, as in the adult, callosal connections coincided with regions of high CytOx activity in area V2. The results showing a relative maturity of the tangential distribution of callosal projecting neurons on the one hand, and an immaturity of thalamic projections on the other, are discussed in terms of: (1) the maturational status of the newborn monkey compared to other mammals at the moment of birth and (2) the possible role of visual experience in shaping cortical connections.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013787 Thalamic Nuclei Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain. Nuclei, Thalamic
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

C Dehay, and H Kennedy
September 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C Dehay, and H Kennedy
January 1995, Visual neuroscience,
C Dehay, and H Kennedy
September 2000, The Journal of comparative neurology,
C Dehay, and H Kennedy
November 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C Dehay, and H Kennedy
January 1989, The European journal of neuroscience,
C Dehay, and H Kennedy
January 1996, Journal of physiology, Paris,
C Dehay, and H Kennedy
January 1996, Brain research bulletin,
C Dehay, and H Kennedy
January 1989, The European journal of neuroscience,
C Dehay, and H Kennedy
January 1989, The European journal of neuroscience,
C Dehay, and H Kennedy
January 1993, Cerebral cortex (New York, N.Y. : 1991),
Copied contents to your clipboard!