Effects of acidosis on ventricular muscle from adult and neonatal rats. 1988

R J Solaro, and J A Lee, and J C Kentish, and D G Allen
Department of Physiology, University College London, England.

We compared the response of ventricular muscle from adult and neonatal rats to hypercapnic acidosis. In adult muscle, acidosis caused an initial rapid fall of developed tension to 30 +/- 5% of control (mean +/- SEM, n = 6). However, tension recovered slowly to a steady state that was 56 +/- 6% of control. In neonatal muscle, acidosis caused a significantly smaller initial fall in tension to 43 +/- 3% (n = 8, p less than 0.05), but the tension then showed a subsequent slower fall to a steady state that was 29 +/- 4% of control, significantly less than in the adult (p less than 0.01). We have attempted to identify the mechanisms underlying these differences in response. In detergent-skinned myofibrils, reducing the pH from 7.0 to 6.5 caused a reduction in the pCa50 of 0.61 units in the adult muscle, but only 0.27 units in the neonatal ventricular muscle. Myofibrillar Ca2+ sensitivity in neonatal ventricular muscle is thus less susceptible to the effects of acidic pH than that of adult muscle. Since intracellular pH decreases rapidly on application of increased external CO2, these results are consistent with the finding that, initially, developed tension in neonatal muscles is less sensitive to the effects of acidosis. Sodium dodecylsulfate gel electrophoresis of myofibrillar preparations from adult and neonatal rats demonstrated differences in thin filament proteins, including troponin I, which may underlie the observed differences in Ca2+ sensitivity. In adult rat ventricular muscles, the slow recovery of tension during acidosis is associated with an increase in the amplitude of the Ca2+ transients to 263 +/- 34% of control (n = 4).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000142 Acidosis, Respiratory Respiratory retention of carbon dioxide. It may be chronic or acute. Respiratory Acidosis,Acidoses, Respiratory,Respiratory Acidoses
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

R J Solaro, and J A Lee, and J C Kentish, and D G Allen
May 1998, General pharmacology,
R J Solaro, and J A Lee, and J C Kentish, and D G Allen
April 2015, Anesthesiology,
R J Solaro, and J A Lee, and J C Kentish, and D G Allen
October 2001, Tissue engineering,
R J Solaro, and J A Lee, and J C Kentish, and D G Allen
September 1998, Canadian journal of physiology and pharmacology,
R J Solaro, and J A Lee, and J C Kentish, and D G Allen
March 1999, Journal of cardiovascular pharmacology,
R J Solaro, and J A Lee, and J C Kentish, and D G Allen
October 1998, European journal of pharmacology,
R J Solaro, and J A Lee, and J C Kentish, and D G Allen
December 1997, The Biochemical journal,
R J Solaro, and J A Lee, and J C Kentish, and D G Allen
June 1998, Cell calcium,
R J Solaro, and J A Lee, and J C Kentish, and D G Allen
June 2004, Molecular and cellular biochemistry,
R J Solaro, and J A Lee, and J C Kentish, and D G Allen
July 1987, Japanese heart journal,
Copied contents to your clipboard!