Influence of phenothiazine molecules on the interactions between positively charged poly-l-lysine and negatively charged DPPC/DPPG membranes. 2020

Paulina Trombik, and Katarzyna Cieślik-Boczula
Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland.

Phenothiazines are very effective antipsychotic drugs, which also have anticancer and antimicrobial activities. Despite being used in human treatment, the molecular mechanism of the biological actions of these molecules is not yet understood in detail. The role of the interactions between phenothiazines and proteins or lipid membranes has been much discussed. Herein, fourier-transform infrared (FTIR) spectroscopic studies were used to investigate the effect of three phenothiazines: fluphenazine (FPh); chlorpromazine (ChP); and propionylpromazine (PP) on the structures of a positively charged poly-l-lysine (PLL) peptide, a negatively charged dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol (DPPC/DPPG) membrane, and on the mutual interactions between electrostatically associated PLL molecules and DPPC/DPPG membranes. Phenothiazine-induced alterations in the secondary structure of PLL, the conformational state (trans/gauche) of the hydrocarbon lipid chains, and the hydration of the DPPC/DPPG membrane interface were studied on the basis of amide I' vibrations, antisymmetric and symmetric stretching vibrations of the CH2 groups of the lipid hydrocarbon chains (νsCH2), and stretching vibrations of the lipid C=O groups (νC = O), respectively. It was shown that in the presence of negatively charged DPPC/DPPG membranes, the phenothiazines were able to modify the secondary structure of charged PLL molecules. Additionally, the effect of PLL on the structure of DPPC/DPPG membranes was also altered by the presence of the phenothiazine molecules.

UI MeSH Term Description Entries
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D011107 Polylysine A peptide which is a homopolymer of lysine. Epsilon-Polylysine,Poly-(Alpha-L-Lysine),Epsilon Polylysine
D011395 Promazine A phenothiazine with actions similar to CHLORPROMAZINE but with less antipsychotic activity. It is primarily used in short-term treatment of disturbed behavior and as an antiemetic. Promazine Hydrochloride,Protactyl,Sinophenin,Sparine,Hydrochloride, Promazine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002746 Chlorpromazine The prototypical phenothiazine antipsychotic drug. Like the other drugs in this class chlorpromazine's antipsychotic actions are thought to be due to long-term adaptation by the brain to blocking DOPAMINE RECEPTORS. Chlorpromazine has several other actions and therapeutic uses, including as an antiemetic and in the treatment of intractable hiccup. Aminazine,Chlorazine,Chlordelazine,Chlorpromazine Hydrochloride,Contomin,Fenactil,Largactil,Propaphenin,Thorazine,Hydrochloride, Chlorpromazine
D005476 Fluphenazine A phenothiazine used in the treatment of PSYCHOSES. Its properties and uses are generally similar to those of CHLORPROMAZINE. Flufenazin,Fluphenazine Hydrochloride,Lyogen,Prolixin,Hydrochloride, Fluphenazine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014150 Antipsychotic Agents Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus. Antipsychotic,Antipsychotic Agent,Antipsychotic Drug,Antipsychotic Medication,Major Tranquilizer,Neuroleptic,Neuroleptic Agent,Neuroleptic Drug,Neuroleptics,Tranquilizing Agents, Major,Antipsychotic Drugs,Antipsychotic Effect,Antipsychotic Effects,Antipsychotics,Major Tranquilizers,Neuroleptic Agents,Neuroleptic Drugs,Tranquillizing Agents, Major,Agent, Antipsychotic,Agent, Neuroleptic,Drug, Antipsychotic,Drug, Neuroleptic,Effect, Antipsychotic,Major Tranquilizing Agents,Major Tranquillizing Agents,Medication, Antipsychotic,Tranquilizer, Major
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl
D017550 Spectroscopy, Fourier Transform Infrared A spectroscopic technique in which a range of wavelengths is presented simultaneously with an interferometer and the spectrum is mathematically derived from the pattern thus obtained. FTIR,Fourier Transform Infrared Spectroscopy,Spectroscopy, Infrared, Fourier Transform

Related Publications

Paulina Trombik, and Katarzyna Cieślik-Boczula
August 2018, Chemistry and physics of lipids,
Paulina Trombik, and Katarzyna Cieślik-Boczula
August 2009, Biomacromolecules,
Paulina Trombik, and Katarzyna Cieślik-Boczula
November 2004, Journal of colloid and interface science,
Paulina Trombik, and Katarzyna Cieślik-Boczula
November 2014, Biochimica et biophysica acta,
Paulina Trombik, and Katarzyna Cieślik-Boczula
April 2019, Biochimica et biophysica acta. Biomembranes,
Paulina Trombik, and Katarzyna Cieślik-Boczula
November 2003, Journal of colloid and interface science,
Paulina Trombik, and Katarzyna Cieślik-Boczula
June 2023, Nanomaterials (Basel, Switzerland),
Paulina Trombik, and Katarzyna Cieślik-Boczula
November 2015, Langmuir : the ACS journal of surfaces and colloids,
Paulina Trombik, and Katarzyna Cieślik-Boczula
September 2019, Physical review. E,
Paulina Trombik, and Katarzyna Cieślik-Boczula
May 1997, Journal of materials science. Materials in medicine,
Copied contents to your clipboard!