Two changes of the same nucleotide confer resistance to diuron and antimycin in the mitochondrial cytochrome b gene of Schizosaccharomyces pombe. 1988

S Weber, and K Wolf
Institut für Mikrobiologie und Weinforschung der Johannes-Gutenberg-Universität Mainz, FRG.

Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and antimycin, both inhibitors of mitochondrial respiration, block electron flow between cytochromes b and c1. Mutants resistant to either drug have been selected using Schizosaccharomyces pombe strains with an extrachromosomally inherited mutator. In analogy to Saccharomyces cerevisiae these mutational sites were assumed to map in the cytochrome b gene. DNA sequence analysis showed that two changes in the same nucleotide are responsible for resistance to antimycin and diuron. Analysis of resistant and sensitive progeny of crosses between the mutants and the wild type confirmed the correlation between mutational alteration and resistant phenotype.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D004237 Diuron A pre-emergent herbicide. DCMU,3-(3,4-Dichlorophenyl)-1,1-dimethylurea
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004718 Saccharomycetales An order of fungi in the phylum Ascomycota that multiply by budding. They include the telomorphic ascomycetous yeasts which are found in a very wide range of habitats. Budding Yeast,Endomycetales,Endomycopsis,Yeast, Budding,Budding Yeasts,Endomycetale,Endomycopses,Saccharomycetale,Yeasts, Budding
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Weber, and K Wolf
February 1982, Molecular and cellular biology,
S Weber, and K Wolf
November 1993, Molecular & general genetics : MGG,
S Weber, and K Wolf
February 1972, Biochimica et biophysica acta,
S Weber, and K Wolf
December 1970, Biochimica et biophysica acta,
S Weber, and K Wolf
March 1974, Biochimica et biophysica acta,
Copied contents to your clipboard!