Flumazenil-insensitive benzodiazepine binding sites in GABAA receptors contribute to benzodiazepine-induced immobility in zebrafish larvae. 2019

Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.

OBJECTIVE Benzodiazepines (BZDs) produce various pharmacological actions by binding to and allosterically regulating GABAA receptors. Several in vitro studies have demonstrated diazepam, the prototypic BZD, produces a high-dose action that cannot be countered with the classical BZD-binding site antagonist flumazenil. Here, we investigate the existence and behavioral relevance of non-classical BZD binding sites in zebrafish larvae. METHODS Zebrafish larvae were treated with a series of BZDs alone or combined with flumazenil, bicuculline (a non-selective GABAA receptor antagonist), or RO 15-4513 (a general BZD antagonist and a proposed antagonist interacting with α+/β- interfaces in α4/6/β3δ receptors), and their locomotor activities and behavioral phenotypes were recorded. RESULTS Diazepam-induced hypolocomotion (sedation-like state) at low doses (10 and 20 mg L-1) was effectively antagonized by flumazenil or bicuculline, while diazepam-induced immobility (anesthesia-like state) at higher dose (30 mg L-1) was prevented by bicuculline (3 mg L-1) but not flumazenil, even at doses up to 150 mg L-1. Ro 15-4513 also failed to efficiently antagonize diazepam-induced immobility. Immobility induced by high dose of another 1,4-BZD, clonazepam, was also resistant to flumazenil. CONCLUSIONS These results provide direct in vivo evidence for non-classical BZD-binding sites, which may be located at the second transmembrane domain of GABAA receptors and contribute to BZD-induced anesthesia.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002998 Clonazepam An anticonvulsant used for several types of seizures, including myotonic or atonic seizures, photosensitive epilepsy, and absence seizures, although tolerance may develop. It is seldom effective in generalized tonic-clonic or partial seizures. The mechanism of action appears to involve the enhancement of GAMMA-AMINOBUTYRIC ACID receptor responses. 2H-1,4-Benzodiazepin-2-one, 5-(2-chlorophenyl)-1,3-dihydro-7-nitro-,Klonopin,Antelepsin,Rivotril,Ro 5-4023,Ro 54023
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D005442 Flumazenil A potent benzodiazepine receptor antagonist. Since it reverses the sedative and other actions of benzodiazepines, it has been suggested as an antidote to benzodiazepine overdoses. Flumazepil,Anexate,Lanexat,Ro 15-1788,Romazicon,Ro 15 1788,Ro 151788
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide

Related Publications

Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
March 2020, Brain sciences,
Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
July 2018, Trends in pharmacological sciences,
Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
December 2021, International journal of molecular sciences,
Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
November 1997, Trends in pharmacological sciences,
Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
August 2009, Autism research : official journal of the International Society for Autism Research,
Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
August 2018, ACS chemical biology,
Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
January 2004, The Journal of biological chemistry,
Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
July 1993, European journal of pharmacology,
Yanqing Cao, and Hui Yan, and Gang Yu, and Ruibin Su
January 2005, European journal of pharmacology,
Copied contents to your clipboard!