Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. 1988

J T Williams, and W F Colmers, and Z Z Pan
Vollum Institute, Oregon Health Sciences University, Portland 97201.

Intracellular recordings were made from neurons in rat dorsal raphe in the slice preparation maintained at 37 degrees C. The single-electrode voltage-clamp method was used to measure membrane currents at potentials more negative than rest (-60 mV). Three types of inward rectification were observed: 2 in the absence of any drugs and the third induced by 5-HT 1 and GABA-B receptor agonists. In the absence of any drugs, an inward current activated over 1-2 sec when the membrane potential was stepped to potentials more negative than -70 mV. This current was blocked by cesium (2 mM) and resembles IQ or IH. A second inward current (IIR) occurred at membrane potentials near the potassium equilibrium potential (EK). This inward current activated within the settling time of the clamp and was abolished by both barium (10-100 microM) and cesium (2 mM). 5-HT 1 agonists activated a potassium conductance that hyperpolarized the cells at rest. This potassium conductance was about 2 nS at -60 mV and increased linearly with membrane hyperpolarization to about 4 nS at -120 mV. Baclofen activated a potassium conductance identical in amplitude and voltage dependence to that induced by 5-HT 1 agonists. Both the baclofen- and 5-HT-induced currents were nearly abolished in animals pretreated with pertussis toxin. The results indicate that a common potassium conductance is increased by 5-HT acting on 5-HT 1 receptors and baclofen acting on GABA-B receptors. This potassium conductance rectifies inwardly and is distinct from the Q-current. The ligand-activated potassium conductance also differs from the other form of inward rectification (IIR) in its voltage dependence and sensitivity to pertussis toxin.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001418 Baclofen A GAMMA-AMINOBUTYRIC ACID derivative that is a specific agonist of GABA-B RECEPTORS. It is used in the treatment of MUSCLE SPASTICITY, especially that due to SPINAL CORD INJURIES. Its therapeutic effects result from actions at spinal and supraspinal sites, generally the reduction of excitatory transmission. Baclophen,Chlorophenyl GABA,Apo-Baclofen,Atrofen,Ba-34,647,Ba-34647,Baclofen AWD,Baclofène-Irex,Baclospas,CIBA-34,647-BA,Clofen,Gen-Baclofen,Genpharm,Lebic,Lioresal,Liorésal,Nu-Baclo,PCP-GABA,PMS-Baclofen,beta-(Aminomethyl)-4-chlorobenzenepropanoic Acid,beta-(p-Chlorophenyl)-gamma-aminobutyric Acid,AWD, Baclofen,Apo Baclofen,ApoBaclofen,Ba34,647,Ba34647,Baclofène Irex,BaclofèneIrex,CIBA34,647BA,GABA, Chlorophenyl,Gen Baclofen,GenBaclofen,Nu Baclo,NuBaclo,PMS Baclofen,PMSBaclofen

Related Publications

J T Williams, and W F Colmers, and Z Z Pan
March 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J T Williams, and W F Colmers, and Z Z Pan
December 1997, The Journal of physiology,
J T Williams, and W F Colmers, and Z Z Pan
February 1990, Journal of neurophysiology,
J T Williams, and W F Colmers, and Z Z Pan
February 2007, Acta pharmacologica Sinica,
J T Williams, and W F Colmers, and Z Z Pan
October 1996, Naunyn-Schmiedeberg's archives of pharmacology,
J T Williams, and W F Colmers, and Z Z Pan
October 1991, Pflugers Archiv : European journal of physiology,
J T Williams, and W F Colmers, and Z Z Pan
October 1997, The Journal of physiology,
Copied contents to your clipboard!