Modeling DNA Unwinding by AddAB Helicase-Nuclease and Modulation by Chi Sequences: Comparison with AdnAB and RecBCD. 2019

Ping Xie
Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China.

BACKGROUND AddAB enzyme is a helicase-nuclease complex that initiates recombinational repair of double-stranded DNA breaks. It catalyzes processive DNA unwinding and concomitant resection of the unwound strands, which are modulated by the recognition of a recombination hotspot called Chi in the 3'-terminated strand. Despite extensive structural, biochemical and single molecule studies, the detailed molecular mechanism of DNA unwinding by the complex and modulation by Chi sequence remains unclear. METHODS A model of DNA unwinding by the AddAB complex and modulation by Chi recognition was presented, based on which the dynamics of AddAB complex was studied analytically. RESULTS The theoretical results explain well the available experimental data on effect of DNA sequence on velocity, effect of Chi recognition on velocity, static disorder peculiar to the AddAB complex, and dynamics of pausing of wild-type and mutant AddAB complexes occurring at Chi or Chi-like sequence. Predictions were provided. Comparisons of AddAB complex with other helicase-nuclease complexes such as RecBCD and AdnAB were made. CONCLUSIONS The study has strong implications for the molecular mechanism of DNA unwinding by the AddAB complex. The intriguing issues are addressed of why Chi recognition is an inefficient process, how AddAB complex pauses upon recognizing Chi sequence, how the paused state transits to the translocating state, why the mutant AddAB with a stronger affinity to Chi sequence has a shorter pausing lifetime, why the pausing lifetime is sensitive to the solution temperature, and so on.

UI MeSH Term Description Entries

Related Publications

Copied contents to your clipboard!