Novel Mechanistic Insights into the Anti-cancer Mode of Arsenic Trioxide. 2020

Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan.

Arsenic, a naturally-occurring toxic element, and a traditionally-used drug, has received a great deal of attention worldwide due to its curative anti-cancer properties in patients with acute promyelocytic leukemia. Among the arsenicals, arsenic trioxide has been most widely used as an anti-cancer drug. Recent advances in cancer therapeutics have led to a paradigm shift away from traditional cytotoxic drugs towards the targeting of proteins closely associated with driving the cancer phenotype. Due to the diverse anti-cancer effects of ATO on different types of malignancies, numerous studies have made efforts to uncover the mechanisms of ATO-induced tumor suppression. From in vitro cellular models to studies in clinical settings, ATO has been extensively studied. The outcomes of these studies have opened doors to establishing improved molecular-targeted therapies for cancer treatment. The efficacy of ATO has been augmented by combination with other drugs. In this review, we discuss recent arsenic-based cancer therapies and summarize the novel underlying molecular mechanisms of the anti-cancer effects of ATO.

UI MeSH Term Description Entries
D008297 Male Males
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077237 Arsenic Trioxide An inorganic compound with the chemical formula As2O3 that is used for the treatment of ACUTE PROMYELOCYTIC LEUKEMIA in patients who have relapsed from, or are resistant to, conventional drug therapy. Arsenic Oxide (As2O3),Arsenic Oxide (As4O6),Arsenic(III) Oxide,Arsenolite,Arsenous Anhydride,As2O3,As4O6,Diarsenic Trioxide,Naonobin,Tetra-Arsenic Hexaoxide,Tetra-Arsenic Oxide,Tetraarsenic Hexaoxide,Tetraarsenic Oxide,Trisenox,Trixenox,Tetra Arsenic Hexaoxide,Tetra Arsenic Oxide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D000971 Antineoplastic Combined Chemotherapy Protocols The use of two or more chemicals simultaneously or sequentially in the drug therapy of neoplasms. The drugs need not be in the same dosage form. Anticancer Drug Combinations,Antineoplastic Agents, Combined,Antineoplastic Chemotherapy Protocols,Antineoplastic Drug Combinations,Cancer Chemotherapy Protocols,Chemotherapy Protocols, Antineoplastic,Drug Combinations, Antineoplastic,Antineoplastic Combined Chemotherapy Regimens,Combined Antineoplastic Agents,Agent, Combined Antineoplastic,Agents, Combined Antineoplastic,Anticancer Drug Combination,Antineoplastic Agent, Combined,Antineoplastic Chemotherapy Protocol,Antineoplastic Drug Combination,Cancer Chemotherapy Protocol,Chemotherapy Protocol, Antineoplastic,Chemotherapy Protocol, Cancer,Chemotherapy Protocols, Cancer,Combinations, Antineoplastic Drug,Combined Antineoplastic Agent,Drug Combination, Anticancer,Drug Combination, Antineoplastic,Drug Combinations, Anticancer,Protocol, Antineoplastic Chemotherapy,Protocol, Cancer Chemotherapy,Protocols, Antineoplastic Chemotherapy,Protocols, Cancer Chemotherapy
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D019337 Hematologic Neoplasms Neoplasms located in the blood and blood-forming tissue (the bone marrow and lymphatic tissue). The commonest forms are the various types of LEUKEMIA, of LYMPHOMA, and of the progressive, life-threatening forms of the MYELODYSPLASTIC SYNDROMES. Blood Cancer,Hematologic Malignancies,Hematopoietic Neoplasms,Hematologic Malignancy,Hematological Malignancies,Hematological Neoplasms,Hematopoietic Malignancies,Malignancies, Hematologic,Malignancy, Hematologic,Neoplasms, Hematologic,Neoplasms, Hematopoietic,Blood Cancers,Cancer, Blood,Hematologic Neoplasm,Hematological Malignancy,Hematological Neoplasm,Hematopoietic Malignancy,Hematopoietic Neoplasm,Malignancy, Hematological,Malignancy, Hematopoietic,Neoplasm, Hematologic,Neoplasm, Hematological,Neoplasm, Hematopoietic

Related Publications

Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
January 2013, BMC genomics,
Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
August 2007, Toxicology and applied pharmacology,
Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
May 2018, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
April 2020, Immunopharmacology and immunotoxicology,
Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
September 2016, Microbial pathogenesis,
Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
March 2014, Journal of molecular modeling,
Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
January 2020, Cellular & molecular biology letters,
Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
June 2023, Pharmaceutics,
Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
June 2005, Hematology (Amsterdam, Netherlands),
Md Wahiduzzaman, and Akinobu Ota, and Yoshitaka Hosokawa
November 2019, Journal of proteome research,
Copied contents to your clipboard!