Morphological and functional changes in neonatally X-irradiated thyroid gland in rats. 2020

Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.

Exposure to ionized radiation in childhood has been recognized as a risk factor for the development of thyroid cancer and possibly for other thyroid disorders. However, the effects of neonatal radiation exposure on thyroid morphology and functions have never been explored despite its potential importance. One-week-old male Wistar rats were subjected to cervical X-irradiation at 6 and 12 Gy. Animals were examined at the ages of 2, 8 and 18 weeks old. For comparison, 8-week-old rats were cervically X-irradiated at the same doses. Thyroid histology was examined by computer-assisted microscopy to measure areas of colloid and epithelium of thyroid follicles as well as epithelial heights. In rats that received cervical X-irradiation at 1 week old, the colloid size of thyroid follicles decreased at the age of 8 weeks old in a radiation-dose dependent manner. This morphological change was persistently found at 18 weeks old. There were no significant differences in serum total T3 or T4 levels among the groups. Serum TSH levels increased significantly in 8-week-old rats neonatally X-irradiated. Thyroglobulin (Tg) mRNA and protein expressions were significantly decreased in the neonatally-irradiated group while thyroid peroxidase mRNA express increased at 18 weeks old. None of these changes were observed in the rats X-irradiated at 8 weeks old. In conclusion, our results clearly demonstrated that neonatal rat thyroid was sensitive to ionized radiation, developing specific morphological changes characterized by smaller thyroid follicles along with changes in serum TSH levels and Tg expressions in the thyroid tissue.

UI MeSH Term Description Entries
D007453 Iodide Peroxidase A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8. Iodinase,Iodothyronine 5'-Deiodinase,Iodothyronine Deiodinase,Iodotyrosine Deiodase,Thyroid Peroxidase,Thyroxine 5'-Deiodinase,Thyroxine 5'-Monodeiodinase,5'-Deiodinase,Deiodinase,Iodotyrosine Deiodinase,Monodeiodinase,Reverse Triiodothyronine 5'-Deiodinase,T4-5'-Deiodinase,T4-Monodeiodinase,Tetraiodothyronine 5'-Deiodinase,Thyroxine Converting Enzyme,Triiodothyronine Deiodinase,5' Deiodinase,5'-Deiodinase, Iodothyronine,5'-Deiodinase, Reverse Triiodothyronine,5'-Deiodinase, Tetraiodothyronine,5'-Deiodinase, Thyroxine,5'-Monodeiodinase, Thyroxine,Deiodase, Iodotyrosine,Deiodinase, Iodothyronine,Deiodinase, Iodotyrosine,Deiodinase, Triiodothyronine,Enzyme, Thyroxine Converting,Iodothyronine 5' Deiodinase,Peroxidase, Iodide,Peroxidase, Thyroid,Reverse Triiodothyronine 5' Deiodinase,T4 5' Deiodinase,T4 Monodeiodinase,Tetraiodothyronine 5' Deiodinase,Thyroxine 5' Deiodinase,Thyroxine 5' Monodeiodinase,Triiodothyronine 5'-Deiodinase, Reverse
D008297 Male Males
D009333 Neck The part of a human or animal body connecting the HEAD to the rest of the body. Necks
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013954 Thyroglobulin

Related Publications

Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
January 1968, Fiziolohichnyi zhurnal,
Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
April 1958, Journal of comparative and physiological psychology,
Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
October 1958, Journal of comparative and physiological psychology,
Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
October 1966, American journal of physical medicine,
Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
January 1966, International journal of radiation biology and related studies in physics, chemistry, and medicine,
Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
January 1976, Patologicheskaia fiziologiia i eksperimental'naia terapiia,
Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
January 1972, Problemy endokrinologii,
Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
January 1964, Vestnik khirurgii imeni I. I. Grekova,
Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
March 1977, Indian journal of biochemistry & biophysics,
Nariaki Fujimoto, and Mutsumi Matsuu-Matsuyama, and Masahiro Nakashima
August 1995, The Journal of endocrinology,
Copied contents to your clipboard!