Interaction between the splotch mutation and retinoic acid in mouse neural tube defects in vitro. 1988

C M Kapron-Brás, and D G Trasler
Department of Biology, McGill University, Montreal, Quebec, Canada.

The interaction between the splotch gene (Sp) and all-trans retinoic acid (RA) was investigated using cytogenetically marked Sp/+ and +/+ mouse embryos cultured in the presence of RA. Retinoic acid retarded the development of and had a teratogenic effect on mouse embryos in culture. In particular, RA had seemingly opposite effects on the posterior neural tube, inducing abnormally early fusion in some embryos and causing a dose-dependent delay in others. When the effects of RA on identified Sp/+ and +/+ embryos were compared, the only observed difference in their responses was in the degree of the delay in posterior neuropore (PNP) closure. At the end of the culture period, among the untreated control embryos, the Sp heterozygotes showed retardation of PNP closure compared to +/+ embryos. In addition, the RA treatment was found to have induced a greater delay in posterior neural tube closure in Sp/+ than in +/+ embryos. The basis for this difference in response to RA is presumed to be the retardation of PNP closure that is caused by the Sp gene in heterozygous form. The effects of the gene and the teratogen are additive and the gene carriers thus have greater mean PNP lengths at the end of culture. Since the length of the PNP is an indication of an embryo's likelihood of developing spina bifida, this provides an explanation for the observation that Sp/+ embryos are more sensitive to the spina bifida-causing effects of RA than are +/+ embryos.

UI MeSH Term Description Entries
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009436 Neural Tube Defects Congenital malformations of the central nervous system and adjacent structures related to defective neural tube closure during the first trimester of pregnancy generally occurring between days 18-29 of gestation. Ectodermal and mesodermal malformations (mainly involving the skull and vertebrae) may occur as a result of defects of neural tube closure. (From Joynt, Clinical Neurology, 1992, Ch55, pp31-41) Craniorachischisis,Developmental Defects, Neural Tube,Diastematomyelia,Exencephaly,Neurenteric Cyst,Spinal Cord Myelodysplasia,Tethered Cord Syndrome,Acrania,Developmental Neural Tube Defects,Iniencephaly,Neural Tube Developmental Defects,Neuroenteric Cyst,Occult Spinal Dysraphism,Occult Spinal Dysraphism Sequence,Tethered Spinal Cord Syndrome,Acranias,Craniorachischises,Cyst, Neurenteric,Cyst, Neuroenteric,Cysts, Neurenteric,Cysts, Neuroenteric,Defect, Neural Tube,Defects, Neural Tube,Diastematomyelias,Dysraphism, Occult Spinal,Dysraphisms, Occult Spinal,Exencephalies,Iniencephalies,Myelodysplasia, Spinal Cord,Myelodysplasias, Spinal Cord,Neural Tube Defect,Neurenteric Cysts,Neuroenteric Cysts,Occult Spinal Dysraphisms,Spinal Cord Myelodysplasias,Spinal Dysraphism, Occult,Spinal Dysraphisms, Occult,Tethered Cord Syndromes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013723 Teratogens An agent that causes the production of physical defects in the developing embryo. Embryotoxins,Fetotoxins,Teratogen
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

C M Kapron-Brás, and D G Trasler
September 1993, Development (Cambridge, England),
C M Kapron-Brás, and D G Trasler
December 1992, Teratology,
C M Kapron-Brás, and D G Trasler
April 2009, Birth defects research. Part A, Clinical and molecular teratology,
C M Kapron-Brás, and D G Trasler
March 1992, Journal of medical genetics,
C M Kapron-Brás, and D G Trasler
May 2007, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
C M Kapron-Brás, and D G Trasler
April 1974, The Journal of comparative neurology,
C M Kapron-Brás, and D G Trasler
May 2006, Toxicology and applied pharmacology,
C M Kapron-Brás, and D G Trasler
November 1991, Development (Cambridge, England),
Copied contents to your clipboard!