Novel deazaflavin tyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors. 2020

Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a DNA repair enzyme that removes 5'-phosphotyrosyl blockages resulting from topoisomerase II (TOP2)-DNA cleavage complexes trapped by TOP2 inhibitors. TDP2 is a logical target for the development of therapeutics to complement existing treatments based on inhibition of TOP2. There is, however, no TDP2 inhibitor in clinical development at present. Of the reported TDP2 inhibitors, the deazaflavins are the most promising chemical class centered around the lead compound SV-5-153. Recently we reported new subtypes derived within the deazaflavin family with improved membrane permeability properties. In this work we characterize two representative analogues from two new deazaflavin subtypes based on their biochemical TDP2 inhibitory potency and drug-likeness. We demonstrate that the ZW-1288 derivative represents a promising direction for the development of deazaflavins as therapeutic agents. ZW-1288 exhibits potent inhibitory activity at low nanomolar concentrations against recombinant and cellular human TDP2 with profile similar to that of the parent analog SV-5-153 based on high resistance against murine TDP2 and human TDP2 mutated at residue L313H. While expressing weak cytotoxicity on its own, ZW-1288 potentiates the clinical TOP2 inhibitors etoposide (ETP) and mitoxantrone in human prostate DU145 and CCRF-CEM leukemia and chicken lymphoma DT40 cells while not impacting the activity of the topoisomerase I (TOP1) inhibitor camptothecin or the PARP inhibitor olaparib. ZW-1288 increases the uptake of ETP to a lesser extent than SV-5-153 and remained active in TDP2 knockout cells indicating that the deazaflavin TDP2 inhibitors have additional cellular effects that will have to be taken into account for their further development as TDP2 inhibitors.

UI MeSH Term Description Entries
D008942 Mitoxantrone An anthracenedione-derived antineoplastic agent. Mitozantrone,CL-232325,DHAQ,Mitoxantrone Acetate,Mitoxantrone Hydrochloride,Mitroxone,NSC-279836,NSC-287836,NSC-299195,NSC-301739,NSC-301739D,Novantron,Novantrone,Onkotrone,Pralifan,Ralenova,Acetate, Mitoxantrone,CL 232325,CL232325,Hydrochloride, Mitoxantrone,NSC 279836,NSC 287836,NSC 299195,NSC 301739,NSC 301739D,NSC279836,NSC287836,NSC299195,NSC301739,NSC301739D
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010726 Phosphodiesterase Inhibitors Compounds which inhibit or antagonize the biosynthesis or actions of phosphodiesterases. Phosphodiesterase Antagonists,Phosphodiesterase Inhibitor,Phosphoric Diester Hydrolase Inhibitors,Antiphosphodiesterases,Inhibitor, Phosphodiesterase
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005047 Etoposide A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle. Demethyl Epipodophyllotoxin Ethylidine Glucoside,Celltop,Eposide,Eposin,Eto-GRY,Etomedac,Etopos,Etoposide Pierre Fabre,Etoposide Teva,Etoposide, (5S)-Isomer,Etoposide, (5a alpha)-Isomer,Etoposide, (5a alpha,9 alpha)-Isomer,Etoposide, alpha-D-Glucopyranosyl Isomer,Etoposido Ferrer Farma,Exitop,Lastet,NSC-141540,Onkoposid,Riboposid,Toposar,VP 16-213,VP-16,Vepesid,Vépéside-Sandoz,Eto GRY,Etoposide, alpha D Glucopyranosyl Isomer,NSC 141540,NSC141540,Teva, Etoposide,VP 16,VP 16 213,VP 16213,VP16,Vépéside Sandoz,alpha-D-Glucopyranosyl Isomer Etoposide
D005415 Flavins Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.

Related Publications

Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
July 2016, ACS chemical biology,
Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
February 2021, Medicinal chemistry research : an international journal for rapid communications on design and mechanisms of action of biologically active agents,
Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
March 2016, Journal of medicinal chemistry,
Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
June 2021, Bioorganic chemistry,
Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
January 2020, DNA repair,
Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
December 2021, Molecules (Basel, Switzerland),
Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
September 2011, Expert opinion on therapeutic patents,
Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
July 2014, DNA repair,
Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
August 2023, The Journal of biological chemistry,
Evgeny Kiselev, and Azhar Ravji, and Jayakanth Kankanala, and Jiashu Xie, and Zhengqiang Wang, and Yves Pommier
November 2016, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!