EEG Alpha-Rhythm-Related Changes in BOLD fMRI Signal in Neurofeedback Training. 2019

L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia. lyudmilakozlova@yandex.ru.

Interaction of EEG and BOLD brain activity was studied in subjects during EEG-biofeedback training course (20 sessions). Healthy male subjects aged 20-35 underwent a training course of sound-reinforced upregulation of alpha- (20 participants) or beta-activity (9 participants). Pretraining, intermediate (after 10 sessions), and post-training fMRI-EEG recordings were conducted in resting state and during the participants' attempts to upregulate the power of target EEG activity. Regression analysis was carried out on three sessions in total; the main changes in BOLD signal connected with alpha rhythm power were related to the subjects who performed alpha training "good enough" (were able to increase alpha power at least at one stage). Maximum changes in BOLD response connected with alpha rhythm power were observed in the form of deactivation at T8 lead in the right hemisphere, and at F7 in the left hemisphere, and involved middle frontal gyrus, triangular part of inferior frontal gyrus, superior temporal gyrus, parietal lobule, and insula. The identified areas correspond to the executive control network (ECN) and anterior salience network (ASN).

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000513 Alpha Rhythm Brain waves characterized by a relatively high voltage or amplitude and a frequency of 8-13 Hz. They constitute the majority of waves recorded by EEG registering the activity of the parietal and occipital lobes when the individual is awake, but relaxed with the eyes closed. Alpha Rhythms,Rhythm, Alpha,Rhythms, Alpha
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices
D055815 Young Adult A person between 19 and 24 years of age. Adult, Young,Adults, Young,Young Adults

Related Publications

L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
February 2018, Human brain mapping,
L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
July 2016, Human brain mapping,
L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
March 2006, NeuroImage,
L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
February 2022, Neurophysiologie clinique = Clinical neurophysiology,
L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
September 2010, Epilepsia,
L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
October 2001, Human brain mapping,
L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
January 2016, NeuroImage. Clinical,
L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
May 2004, NeuroImage,
L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
June 2015, NeuroImage,
L I Kozlova, and E D Petrovskii, and E G Verevkin, and M E Mel'nikov, and A A Savelov, and M B Shtark
January 2015, Human brain mapping,
Copied contents to your clipboard!