Enigmatic rhodopsin mutation creates an exceptionally strong splice acceptor site. 2020

Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.

The c.620 T > G mutation in rhodopsin found in the first mapped autosomal dominant retinitis pigmentosa (adRP) locus is associated with severe, early-onset RP. Intriguingly, another mutation affecting the same nucleotide (c.620 T > A) is related to a mild, late-onset RP. Assuming that both mutations are missense mutations (Met207Arg and Met207Lys) hampering the ligand-binding pocket, previous work addressed how they might differentially impair rhodopsin function. Here, we investigated the impact of both mutations at the mRNA and protein level in HEK293 cells and in the mouse retina. We show that, in contrast to c.620 T > A, c.620 T > G is a splicing mutation, which generates an exceptionally strong splice acceptor site (SAS) resulting in a 90 bp in-frame deletion and protein mislocalization in vitro and in vivo. Moreover, we identified the core element underlying the c.620 T > G SAS strength. Finally, we demonstrate that the c.620 T > G SAS is very flexible in branch point choice, which might explain its remarkable performance. Based on these results, we suggest that (i) point mutations should be routinely tested for mRNA splicing to avoid dispensable analysis of mutations on protein level, which do not naturally exist. (ii) Puzzling disease courses of mutations in other genes might also correlate with their effects on mRNA splicing. (iii) Flexibility in branch point choice might be another factor influencing the SAS strength. (iv) The core splice element identified in this study could be useful for biotechnological applications requiring effective SAS.

UI MeSH Term Description Entries
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012174 Retinitis Pigmentosa Hereditary, progressive degeneration of the retina due to death of ROD PHOTORECEPTORS initially and subsequent death of CONE PHOTORECEPTORS. It is characterized by deposition of pigment in the retina. Pigmentary Retinopathy,Tapetoretinal Degeneration,Pigmentary Retinopathies,Retinopathies, Pigmentary,Retinopathy, Pigmentary,Tapetoretinal Degenerations
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell
D020125 Mutation, Missense A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed) Missense Mutation,Missense Mutations,Mutations, Missense

Related Publications

Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
February 2001, Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics,
Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
October 1986, The EMBO journal,
Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
December 2000, Genes, chromosomes & cancer,
Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
February 2015, Journal of applied genetics,
Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
August 2003, American journal of medical genetics. Part A,
Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
November 2021, HLA,
Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
August 2023, HLA,
Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
June 2002, The Journal of clinical endocrinology and metabolism,
Lisa M Riedmayr, and Sybille Böhm, and Martin Biel, and Elvir Becirovic
January 2015, PloS one,
Copied contents to your clipboard!