Modulating effects of beta-naphthoflavone on the induction of SCEs by model compounds with emphasis on benzo[a]pyrene. 1988

W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
Department of Toxicology, Agricultural University, Wageningen, The Netherlands.

The inducing capability of the synthetic flavonol beta-naphthoflavone (beta-NF) on cytochrome P-450 content was studied in primary chick embryo hepatocytes. In addition, the modulating effects of pretreatment with beta-NF on the induction of sister-chromatid exchanges (SCEs) in V79 cells by mutagens from different chemical classes were investigated in a co-cultivation system consisting of primary chick embryo hepatocytes and V79 Chinese hamster cells. Finally, the effects of pretreatment on benzo[a]pyrene (B(a)P) metabolism were studied in more detail. Pretreatment of cultured primary chick embryo hepatocytes with beta-NF resulted in a large increase in cytochrome P-450 content (a 2.8-fold increase after 31 h). Pretreatment with beta-NF had no effect on the level of SCEs induced by N-nitroso-dimethylamine (NDMA) and 2-aminoanthracene (2AA). Pretreatment with beta-NF resulted in a decrease in B(a)P-induced SCEs. This inhibitory potential was positively related to the beta-NF dose. However, there was an inverse relationship between the inhibitory action of beta-NF and the dose of B(a)P, at higher doses less inhibition was observed. When beta-NF was applied simultaneously with B(a)P the percentage of decrease was about the same as for pretreatment. Pretreatment with beta-NF followed by simultaneous application of beta-NF and B(a)P did not result in larger effects. In addition, subcellular fractions were prepared from chick embryos pretreated with beta-NF in ovo. The use of the S9 fraction resulted in a large decrease (80%) in the induction of SCEs in V79 cells by B(a)P whereas the use of the microsomal fraction resulted in a 70% increase in SCE induction compared with non-pretreated microsomes. Pretreatment with beta-NF in ovo gave rise to a large increase in aryl hydrocarbon hydroxylase (AHH) activity in the hepatic microsomal fraction. Increases were observed in the formation of all B(a)P metabolites. In particular the formation of the proximate carcinogenic and mutagenic metabolite B(a)P-7,8 dihydrodiol was increased 7-fold. The data strongly suggest that the inhibitory effects of pretreatment of cultured primary chick embryo hepatocytes with beta-NF cannot be ascribed to its inducing capabilities but instead seem to be due to the formation of an intracellular pool of beta-NF which acts as a competitive inhibitor for B(a)P metabolism.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
February 1992, Ecotoxicology and environmental safety,
W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
September 1983, Cancer letters,
W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
January 1997, Carcinogenesis,
W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
August 1985, Cancer research,
W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
July 2003, Environment international,
W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
October 1986, Journal of interferon research,
W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
April 1980, Mutation research,
W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
September 1984, Journal of the National Cancer Institute,
W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
September 2002, Ecotoxicology and environmental safety,
W M Jongen, and G W Sandker, and M P Goertz, and R J Topp, and P J van Bladeren
June 1981, Biochemical pharmacology,
Copied contents to your clipboard!