The Anticancer Properties of Silibinin: Its Molecular Mechanism and Therapeutic Effect in Breast Cancer. 2020

Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland.

Silibinin (SB), the main component of Silymarin (SM), is a natural substance obtained from the seeds of the milk thistle. SM contains up to 70% of SB as two isoforms: A and B. It has an antioxidant and anti-inflammatory effect on hepatocytes and is known to inhibit cell proliferation, induce apoptosis, and curb angiogenesis. SB has demonstrated activity against many cancers, such as skin, liver, lung, bladder, and breast carcinomas. This review presents current knowledge of the use of SM in breast cancer, this being one of the most common types of cancer in women. It describes selected molecular mechanisms of the action of SM; for example, although SB influences both Estrogen Receptors (ER), α and β, it has opposite effects on the two. Its action on ERα influences the PI3K/AKT/mTOR and RAS/ERK signaling pathways, while by up-regulating ERβ, it increases the numbers of apoptotic cells. In addition, ERα is involved in SB-induced autophagy, while ERβ is not. Interestingly, SB also inhibits metastasis by suppressing TGF-β2 expression, thus suppressing Epithelial to Mesenchymal Transition (EMT). It also influences migration and invasive potential via the Jak2/STAT3 pathway. SB may be a promising enhancement of BC treatment: when combined with chemotherapeutic drugs such as carboplatin, cisplatin, and doxorubicin, the combination exerts a synergistic effect against cancer cells. This may be of value when treating aggressive types of mammary carcinoma. Summarizing, SB inhibits proliferation, induces apoptosis, and restrains metastasis via several mechanisms. It is possible to combine SB with different anticancer drugs, an approach that represents a promising therapeutic strategy for patients suffering from BC.

UI MeSH Term Description Entries
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077385 Silybin The major active component of silymarin flavonoids extracted from seeds of the MILK THISTLE, Silybum marianum; it is used in the treatment of HEPATITIS; LIVER CIRRHOSIS; and CHEMICAL AND DRUG INDUCED LIVER INJURY, and has antineoplastic activity; silybins A and B are diastereomers. 2,3-Dehydrosilybin,Alepa-forte,Ardeyhepan,Cefasilymarin,Durasilymarin,Hepa-Merz Sil,Hepa-loges,HepaBesch,Hepar-Pasc,Heparsyx,Heplant,Lagosa,Legalon Forte,Silibin,Silibinin,Silibinin A,Silibinin B,Silybin A,Silybin B,Silybinin,2,3 Dehydrosilybin,Alepa forte,Hepa Merz Sil,Hepa loges,Hepar Pasc
D000972 Antineoplastic Agents, Phytogenic Agents obtained from higher plants that have demonstrable cytostatic or antineoplastic activity. Antineoplastics, Botanical,Antineoplastics, Phytogenic,Agents, Phytogenic Antineoplastic,Botanical Antineoplastics,Phytogenic Antineoplastic Agents,Phytogenic Antineoplastics
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
October 2014, Annals of surgical treatment and research,
Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
May 2017, Asian Pacific journal of cancer prevention : APJCP,
Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
July 2015, Molecular medicine reports,
Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
August 2014, International journal of oncology,
Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
July 2012, Journal of pharmaceutical sciences,
Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
January 2018, Anti-cancer agents in medicinal chemistry,
Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
June 2002, Yao xue xue bao = Acta pharmaceutica Sinica,
Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
August 2023, Chinese journal of integrative medicine,
Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
September 2010, Cancer metastasis reviews,
Agata Binienda, and Sylwia Ziolkowska, and Elzbieta Pluciennik
January 2020, Current medicinal chemistry,
Copied contents to your clipboard!