Non-additive effects of adjunct erythropoietin therapy with therapeutic hypothermia after global cerebral ischaemia in near-term fetal sheep. 2020

Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, New Zealand.

Recombinant human erythropoietin (rEpo) is neuroprotective in immature animals, but it is unclear whether the combination of high-dose rEpo therapy with therapeutic hypothermia can further improve outcomes. Hypothermia and rEpo independently improved neuronal survival, with greater improvement with hypothermia, and similarly reduced numbers of caspase-3 positive cells and reactive microglia after 7 days recovery. Hypothermia, but not rEpo, was associated with markedly improved EEG power, whereas both interventions improved recovery of EEG frequency. There was no significant improvement in any outcome after combined rEpo and hypothermia compared with hypothermia alone, and of concern, the combination was associated with increased numbers of cortical caspase-3-positive cells compared with ischaemia-hypothermia. These data suggest that the mechanisms of neuroprotection with hypothermia and rEpo overlap and, thus, high-dose rEpo infusion does not appear to be an effective adjunct therapy for therapeutic hypothermia. Therapeutic hypothermia for hypoxic-ischaemic encephalopathy (HIE) provides incomplete neuroprotection. Recombinant human erythropoietin (rEpo) is neuroprotective in immature animals, but it is unclear whether adjunct rEpo therapy with therapeutic hypothermia can further improve outcomes. Near-term fetal sheep received sham-ischaemia (n = 9) or global cerebral ischaemia for 30 min (ischaemia-vehicle, n = 8), followed by intravenous infusion of rEpo (ischaemia-Epo, n = 8; 5000 U/kg loading dose, then 833.3 U/kg/h), cerebral hypothermia (ischaemia-hypothermia, n = 8), or rEpo plus hypothermia (ischaemia-Epo-hypothermia, n = 8), from 3 to 72 h post ischaemia. Fetal brains were collected 7 days after cerebral ischaemia. Cerebral ischaemia was associated with severe neuronal loss and microglial induction in the parasagittal cortex and subcortical regions. Hypothermia reduced overall neuronal loss, cortical caspase-3 and reactive microglia in the striatum and cortex, with greater recovery of electroencephalographic (EEG) power and spectral edge (SEF) from 48 h onwards. rEpo independently improved neuronal survival in the parasagittal cortex, hippocampal CA4 and thalamus, and reduced cortical caspase-3 and activated microglia in striatal and cortical areas, with greater SEF from 120 h onwards. However, ischaemia-Epo-hypothermia did not further improve outcomes compared with ischaemia-hypothermia and was associated with increased numbers of cortical caspase-3-positive cells. These findings suggest that although delayed, prolonged treatment with both hypothermia and rEpo are independently neuroprotective, they have overlapping anti-inflammatory and anti-apoptotic mechanisms, such that the delayed, high-dose rEpo infusion for 3 days did not materially augment neuroprotection with therapeutic hypothermia.

UI MeSH Term Description Entries
D007036 Hypothermia, Induced Abnormally low BODY TEMPERATURE that is intentionally induced in warm-blooded animals by artificial means. In humans, mild or moderate hypothermia has been used to reduce tissue damages, particularly after cardiac or spinal cord injuries and during subsequent surgeries. Induced Hypothermia,Mild Hypothermia, Induced,Moderate Hypothermia, Induced,Targeted Temperature Management,Therapeutic Hypothermia,Hypothermia, Therapeutic,Induced Mild Hypothermia,Induced Mild Hypothermias,Induced Moderate Hypothermia,Induced Moderate Hypothermias,Mild Hypothermias, Induced,Moderate Hypothermias, Induced,Targeted Temperature Managements
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D004921 Erythropoietin Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli
D020925 Hypoxia-Ischemia, Brain A disorder characterized by a reduction of oxygen in the blood combined with reduced blood flow (ISCHEMIA) to the brain from a localized obstruction of a cerebral artery or from systemic hypoperfusion. Prolonged hypoxia-ischemia is associated with ISCHEMIC ATTACK, TRANSIENT; BRAIN INFARCTION; BRAIN EDEMA; COMA; and other conditions. Anoxia-Ischemia, Brain,Anoxia-Ischemia, Cerebral,Anoxic-Ischemic Encephalopathy,Brain Anoxia-Ischemia,Brain Hypoxia-Ischemia,Brain Ischemia-Anoxia,Brain Ischemia-Hypoxia,Cerebral Anoxia-Ischemia,Cerebral Hypoxia-Ischemia,Cerebral Ischemia-Anoxia,Cerebral Ischemia-Hypoxia,Hypoxia-Ischemia, Cerebral,Hypoxic-Ischemic Encephalopathy,Ischemia-Anoxia, Brain,Ischemia-Anoxia, Cerebral,Ischemia-Hypoxia, Brain,Ischemia-Hypoxia, Cerebral,Ischemic-Hypoxic Encephalopathy,Encephalopathy, Anoxic-Ischemic,Encephalopathy, Hypoxic-Ischemic,Anoxia Ischemia, Brain,Anoxia Ischemia, Cerebral,Anoxia-Ischemias, Brain,Anoxia-Ischemias, Cerebral,Anoxic Ischemic Encephalopathy,Anoxic-Ischemic Encephalopathies,Brain Anoxia Ischemia,Brain Anoxia-Ischemias,Brain Hypoxia Ischemia,Brain Hypoxia-Ischemias,Brain Ischemia Anoxia,Brain Ischemia Hypoxia,Brain Ischemia-Anoxias,Brain Ischemia-Hypoxias,Cerebral Anoxia Ischemia,Cerebral Anoxia-Ischemias,Cerebral Hypoxia Ischemia,Cerebral Hypoxia-Ischemias,Cerebral Ischemia Anoxia,Cerebral Ischemia Hypoxia,Cerebral Ischemia-Anoxias,Cerebral Ischemia-Hypoxias,Encephalopathies, Anoxic-Ischemic,Encephalopathies, Hypoxic-Ischemic,Encephalopathies, Ischemic-Hypoxic,Encephalopathy, Anoxic Ischemic,Encephalopathy, Hypoxic Ischemic,Encephalopathy, Ischemic-Hypoxic,Hypoxia Ischemia, Brain,Hypoxia Ischemia, Cerebral,Hypoxia-Ischemias, Brain,Hypoxia-Ischemias, Cerebral,Hypoxic Ischemic Encephalopathy,Hypoxic-Ischemic Encephalopathies,Ischemia Anoxia, Brain,Ischemia Anoxia, Cerebral,Ischemia Hypoxia, Brain,Ischemia Hypoxia, Cerebral,Ischemia-Anoxias, Brain,Ischemia-Anoxias, Cerebral,Ischemia-Hypoxias, Brain,Ischemia-Hypoxias, Cerebral,Ischemic Hypoxic Encephalopathy,Ischemic-Hypoxic Encephalopathies

Related Publications

Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
January 2012, International journal of molecular sciences,
Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
March 2005, Pediatric research,
Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
July 2020, Pediatric research,
Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
October 1995, The American journal of physiology,
Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
July 2017, Scientific reports,
Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
October 2013, Experimental neurology,
Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
September 2008, Therapeutic advances in neurological disorders,
Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
August 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
January 2011, Developmental neuroscience,
Guido Wassink, and Joanne O Davidson, and Mhoyra Fraser, and Caroline A Yuill, and Laura Bennet, and Alistair J Gunn
June 2013, British journal of anaesthesia,
Copied contents to your clipboard!