A small-scale procedure for preparation of nuclear extracts that support efficient transcription and pre-mRNA splicing. 1988

K A Lee, and A Bindereif, and M R Green
Harvard University, Cambridge, Massachusetts 02138.

A convenient and rapid method for preparing soluble extracts from the nuclei of as few as 3 x 10(7) mammalian cells (miniextract procedure) is described. By several criteria, miniextracts are comparable to nuclear extracts prepared from large numbers of cells by the conventional procedure. Miniextracts are able to support efficient transcription of a variety of class II promoters. In addition, DNase I footprinting and gel retardation assays can be performed directly in miniextracts, enabling the detection of sequence-specific DNA-binding proteins. Besides transcription, miniextracts efficiently carry out pre-mRNA splicing and allow formation and fractionation of previously characterized splicing complexes. The small-scale procedure enables simultaneous preparation of multiple extracts from a variety of cell types under different experimental conditions. Moreover, the use of small amounts of cells allows minimal expenditure of valuable or expensive materials such as radioactive compounds. Consequently, the procedure is highly advantageous for biochemical analysis of transcription and RNA processing in mammalian cells.

UI MeSH Term Description Entries
D009710 Nucleotide Mapping Two-dimensional separation and analysis of nucleotides. Fingerprints, Nucleotide,Fingerprint, Nucleotide,Mapping, Nucleotide,Mappings, Nucleotide,Nucleotide Fingerprint,Nucleotide Fingerprints,Nucleotide Mappings
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

K A Lee, and A Bindereif, and M R Green
January 1990, Methods in enzymology,
K A Lee, and A Bindereif, and M R Green
June 1994, Current opinion in cell biology,
K A Lee, and A Bindereif, and M R Green
June 2013, Cold Spring Harbor protocols,
K A Lee, and A Bindereif, and M R Green
January 1990, Methods in enzymology,
K A Lee, and A Bindereif, and M R Green
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
K A Lee, and A Bindereif, and M R Green
January 1999, Methods in molecular biology (Clifton, N.J.),
K A Lee, and A Bindereif, and M R Green
June 2000, Journal of cell science,
K A Lee, and A Bindereif, and M R Green
January 2014, Methods in molecular biology (Clifton, N.J.),
K A Lee, and A Bindereif, and M R Green
January 1987, Nature,
Copied contents to your clipboard!