6-Formyl-5-isopropyl-3-hydroxymethyl- 7-methyl-1H-indene mitigates methamphetamine-induced photoreceptor cell toxicity through inhibiting oxidative stress. 2020

H Xu, and C Jiang, and H Zhao, and L Liu
Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China.

As an extremely addictive psychostimulant drug and an illicit dopaminergic neurotoxin, methamphetamine (METH) conducts to enhance satisfaction, feelings of alertness through influencing monoamine neurotransmitter systems. Long-lasting exposure to METH causes psychosis and increases the risk of neurodegeneration. 6-Formyl-5-isopropyl-3-hydroxymethyl-7-methyl-1H-indene (FIHMI) is a novel compound with potent antioxidant properties. This study was to investigate whether FIHMI could mitigate METH-induced photoreceptor cell toxicity. METH-caused cell toxicity was established in 661W cells and protective effects of FIHMI at different concentrations (1-10 µM) was examined. FIHMI significantly attenuated the METH-caused cell damage in 661W cells, evidenced by increasing cell viability and mitochondrial membrane potential, decreasing cytochrome c release and DNA fragmentation, inhibiting activities of caspase 3/9, and changing expression of apoptosis-related protein. Furthermore, FIHMI treatment decreased mRNA expression of Beclin-1 and LC3B protein expression in METH-induced 661W cells suggesting autophagy is reduced. FIHMI decreased the oxidative stress through increasing protein expression of nuclear factor (erythroid-derived 2)-like 2. These data demonstrated FIHMI could inhibit oxidative stress, which may also play an essential role in the regulation of METH-triggered apoptotic response, providing the scientific rational to develop FIHMI as the therapeutic agent to alleviate METH-induced photoreceptor cell toxicity.

UI MeSH Term Description Entries
D007192 Indenes A family of fused-ring hydrocarbons isolated from coal tar that act as intermediates in various chemical reactions and are used in the production of coumarone-indene resins.
D008694 Methamphetamine A central nervous system stimulant and sympathomimetic with actions and uses similar to DEXTROAMPHETAMINE. The smokable form is a drug of abuse and is referred to as crank, crystal, crystal meth, ice, and speed. Deoxyephedrine,Desoxyephedrine,Desoxyn,Madrine,Metamfetamine,Methamphetamine Hydrochloride,Methylamphetamine,N-Methylamphetamine,Hydrochloride, Methamphetamine,N Methylamphetamine
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045304 Cytochromes c Cytochromes of the c type that are found in eukaryotic MITOCHONDRIA. They serve as redox intermediates that accept electrons from MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX III and transfer them to MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX IV. Cytochrome c,Ferricytochrome c,Ferrocytochrome c,Apocytochrome C
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

H Xu, and C Jiang, and H Zhao, and L Liu
October 2015, Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences,
H Xu, and C Jiang, and H Zhao, and L Liu
January 2020, Molecules (Basel, Switzerland),
H Xu, and C Jiang, and H Zhao, and L Liu
September 2001, Acta crystallographica. Section C, Crystal structure communications,
H Xu, and C Jiang, and H Zhao, and L Liu
November 2008, Acta crystallographica. Section E, Structure reports online,
H Xu, and C Jiang, and H Zhao, and L Liu
November 2009, Acta crystallographica. Section E, Structure reports online,
H Xu, and C Jiang, and H Zhao, and L Liu
May 2024, Journal of biochemical and molecular toxicology,
H Xu, and C Jiang, and H Zhao, and L Liu
March 2011, Current neuropharmacology,
H Xu, and C Jiang, and H Zhao, and L Liu
February 2018, Scientific reports,
Copied contents to your clipboard!