Modelling muscle recovery from a fatigued state in isometric contractions for the ankle joint. 2020

Ritwik Rakshit, and James Yang
Human-Centric Design Research Laboratory, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.

Current models of localized muscular fatigue are capable of predicting performance in isometric tasks with reasonable accuracy. However, they do not account for the effect of continuously-varying task intensities on muscular recovery from a fatigued state. In this work, we propose and evaluate three continuous functions for modelling recovery to replace a dichotomous step-function in the three-compartment controller (3CC-r) model of muscle fatigue (Looft et al., 2018) and validate their predictions with previously collected data in the literature for intermittent and sustained isometric tasks of the ankle joint performed at different intensities. When compared to experimental data the accuracy of one of the three proposed models of recovery is found to be nearly the same as that yielded by the original step-function, but this seemingly-identical accuracy may be a limitation of the dataset used. A superelliptical curve relating recovery factor to task intensity is proposed to be the closest replacement for the step function as it depicts both the elevated value of recovery factor for near-rest activities as well as a nearly-constant value for low-to-high-intensity tasks.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008297 Male Males
D012146 Rest Freedom from activity. Rests
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000843 Ankle Joint The joint that is formed by the inferior articular and malleolar articular surfaces of the TIBIA; the malleolar articular surface of the FIBULA; and the medial malleolar, lateral malleolar, and superior surfaces of the TALUS. Ankle Syndesmosis,Articulatio talocruralis,Distal Tibiofibular Joint,Inferior Tibiofibular Joint,Talocrural Joint,Tibiofibular Ankle Syndesmosis,Tibiofibular Syndesmosis,Ankle Joints,Ankle Syndesmoses,Ankle Syndesmosis, Tibiofibular,Distal Tibiofibular Joints,Inferior Tibiofibular Joints,Joint, Ankle,Joints, Ankle,Syndesmosis, Ankle,Talocrural Joints,Tibiofibular Ankle Syndesmoses,Tibiofibular Joint, Distal,Tibiofibular Syndesmoses
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018763 Muscle Fatigue A state arrived at through prolonged and strong contraction of a muscle. Studies in athletes during prolonged submaximal exercise have shown that muscle fatigue increases in almost direct proportion to the rate of muscle glycogen depletion. Muscle fatigue in short-term maximal exercise is associated with oxygen lack and an increased level of blood and muscle lactic acid, and an accompanying increase in hydrogen-ion concentration in the exercised muscle. Fatigue, Muscle,Muscular Fatigue,Fatigue, Muscular
D020127 Recovery of Function A partial or complete return to the normal or proper physiologic activity of an organ or part following disease or trauma. Function Recoveries,Function Recovery

Related Publications

Ritwik Rakshit, and James Yang
January 1965, Journal of engineering psychology,
Ritwik Rakshit, and James Yang
July 2007, Experimental brain research,
Ritwik Rakshit, and James Yang
December 2017, Biological cybernetics,
Ritwik Rakshit, and James Yang
July 2017, Journal of theoretical biology,
Ritwik Rakshit, and James Yang
July 2019, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society,
Ritwik Rakshit, and James Yang
March 1973, Journal of motor behavior,
Ritwik Rakshit, and James Yang
December 2012, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
Copied contents to your clipboard!