Enhanced thermodynamic stability of beta-lactoglobulin at low pH. A possible mechanism. 1988

N K Kella, and J E Kinsella
Institute of Food Science, Cornell University, Ithaca, NY 14853.

The thermodynamic stability of beta-lactoglobulin (beta-Lg) was studied at acidic and near-neutral pH values using equilibrium thermal-unfolding measurements. Transition temperature increased with a decrease in pH from 7.5 to 6.5 and 3.0 to 1.5, suggesting an increase in the net protein stability. Determination of the change in free energy of unfolding and extrapolation into the nontransition region revealed that beta-Lg increases its stability by increasing the magnitude of the change in free energy of unfolding at the temperature of maximum stability, as well as by increasing the temperature of maximum stability. The relative difference in the change in free energy of unfolding at 70 degrees C (with a reference pH of 7.5) was positive and its magnitude increased with a decrease in pH from 7.0 to 1.5 van't Hoff plots of thermal unfolding of beta-Lg at all pH values studied were non-linear and the measured changes in the enthalpy and entropy of unfolding for beta-Lg were high and positive. The relative magnitude of change of both enthalpy and entropy at 70 degrees C (compared with pH 7.5) increased with a decrease in pH up to 1.5. A possible mechanism for the increased stability of beta-Lg at low pH is discussed.

UI MeSH Term Description Entries
D007782 Lactoglobulins Globulins of milk obtained from the WHEY. Lactoglobulin,beta-Lactoglobulin,beta-Lactoglobulin A,beta-Lactoglobulin B,beta-Lactoglobulin C,beta-Lactoglobulin E,beta-Lactoglobulin F,beta-Lactoglobulin G,beta-Lactoglobulin I,beta Lactoglobulin,beta Lactoglobulin A,beta Lactoglobulin B,beta Lactoglobulin C,beta Lactoglobulin E,beta Lactoglobulin F,beta Lactoglobulin G,beta Lactoglobulin I
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

N K Kella, and J E Kinsella
August 2002, European journal of biochemistry,
N K Kella, and J E Kinsella
February 1975, Biochimica et biophysica acta,
N K Kella, and J E Kinsella
May 1977, Biochimica et biophysica acta,
N K Kella, and J E Kinsella
July 1998, Biochemistry and molecular biology international,
N K Kella, and J E Kinsella
October 1998, FEBS letters,
N K Kella, and J E Kinsella
September 2010, Journal of agricultural and food chemistry,
N K Kella, and J E Kinsella
February 2001, Journal of protein chemistry,
N K Kella, and J E Kinsella
July 1980, Journal of dairy science,
N K Kella, and J E Kinsella
July 1980, Journal of dairy science,
N K Kella, and J E Kinsella
June 1995, The Journal of biological chemistry,
Copied contents to your clipboard!