Preparation of Escherichia coli tRNAs terminating of modified nucleosides by the use of CTP(ATP):tRNA nucleotidyltransferase and polynucleotide phosphorylase. 1977

A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock

Two procedures were investigated for the modification of tRNAs at the 3'-terminal nucleoside. The first involved the incubation of an enzymatically abreviated tRNA (tRNA-C-COH) with appropriate nucleoside triphosphates in the presence of CTP(ATP):tRNA nucleotidyltransferase from Escherichia coli and yeast. The E. coli enzyme did not utilize 2'- or 3'-deoxyadenosine 5'-triphosphate as substrates, but affected incorporation of the 2'- and 3'-O-methyladenosine triphosphates onto tRNA-C-Cou to the extent of 30 and 37%, respectively. Although incorporation of the deoxynucleotides could not be effected using the E. coli enzyme, yeast CTP(ATP:tRNA nucleotidyltransferase produced the desired tRNAs in yields of 45-65%. The second modification procedure involved incubation of tRNA-C-COH with (appropriately blocked) nucleoside diphosphates in the presence of polynucleotide phosphorylase. This procedure afforded the tRNAs terminating in 2'- and 3'-deoxyadenosine in yields of 4% (and the yield of the former was increased to 36% when the incubation was carried out in the presence of 20% methanol). The yields of tRNAs terminating in 2'- and 3'-O-methyladenosing produced by this procedure were 55 and 17%, respectively. Because only single isomers of most of the tRNAs terminating in 2'- and 3'-deoxy- and O-methyladenosine are aminoacylated, attempts were made to obtain the other isomericaminoacyl-tRNA by enzymatic introduction of chemically preaminoacylated nucleotides onto tRNA-C-COH. Although incubation of tRNA-C-COH with three aminoacylated nucleoside 5'-triphosphates and E. coli CTP(ATP):tRNA nucleotidyltransferase did not result in production of the desired tRNAs to a detectable extent, incubation with 2'-deoxy-3'-O-L-phenylalanyladenosine 5'-diphosphate and polynucleotide phosphorylase afforded E. coli tRNA terminating with the corresponding aminoacylated deoxynucleoside.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008837 Micrococcus A genus of gram-positive, spherical bacteria found in soils and fresh water, and frequently on the skin of man and other animals.
D011117 Polyribonucleotide Nucleotidyltransferase An enzyme of the transferase class that catalyzes the reaction RNA(n+1) and orthophosphate to yield RNA(n) and a nucleoside diphosphate, or the reverse reaction. ADP, IDP, GDP, UDP, and CDP can act as donors in the latter case. (From Dorland, 27th ed) EC 2.7.7.8. Polynucleotide Phosphorylase,Nucleotidyltransferase, Polyribonucleotide,Phosphorylase, Polynucleotide
D003597 Cytosine Nucleotides A group of pyrimidine NUCLEOTIDES which contain CYTOSINE. Cytidine Phosphates,Nucleotides, Cytosine,Phosphates, Cytidine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012316 RNA Nucleotidyltransferases Enzymes that catalyze the template-directed incorporation of ribonucleotides into an RNA chain. EC 2.7.7.-. Nucleotidyltransferases, RNA

Related Publications

A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock
December 1970, Biochimica et biophysica acta,
A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock
October 2008, The Journal of biological chemistry,
A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock
April 1983, The Journal of biological chemistry,
A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock
January 1970, European journal of biochemistry,
A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock
September 2002, Biochemical and biophysical research communications,
A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock
September 2000, Genes to cells : devoted to molecular & cellular mechanisms,
A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock
December 1997, The Journal of biological chemistry,
A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock
October 1972, Brain research,
A C Chinault, and J W Kozarich, and S M Hecht, and F J Schmidt, and R M Bock
February 1983, Analytical biochemistry,
Copied contents to your clipboard!