Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs. 1977

A C Chinault, and K H Tan, and S M Hassur, and S M Hecht

Transfer RNAs from Escherichia coli, yeast (Sacharomyces cerevisiae), and calf liver were subjected to controlled hydrolysis with venom exonuclease to remove 3'-terminal nucleotides, and then reconstructed successively with cytosine triphosphate (CTP) and 2'- or 3'-deoxyadenosine 5'-triphosphate in the presence of yeast CTP(ATP):tRNA nucleotidyltransferase. The modified tRNAs were purified by chromatography on DBAE-cellulose or acetylated DBAE-cellulose and then utilized in tRNA aminoacylation experiments in the presence of the homologous aminoacyl-tRNA synthetase activities. The E. coli, yeast, and calf liver aminoacyl-tRNA synthetases specific for alanine, glycine, histidine, lysine, serine, and threonine, as well as the E. coli and yeast prolyl-tRNA synthetases and the yeast glutaminyl-tRNA synthetase utilized only those homologous modified tRNAs terminating in 2'-deoxyadenosine (i.e., having an available 3'-OH group). This is interpreted as evidence that these aminoacyl-tRNA synthetases normally aminoacylate their unmodified cognate tRNAs on the 3'-OH group. The aminoacyl-tRNA synthetases from all three sources specific argining, isoleucine, leucine, phenylalanine, and valine, as well as the E. coli and yeast enzymes specific for methionine and the E. coli glutamyl-tRNA synthetase, used as substrates exclusively those tRNAs terminating in 3'-deoxyadenosine. Certain aminoacyl-tRNA synthetases, including the E. coli, yeast, and calf liver asparagine and tyrosine activating enzymes, the E. coli and yeast cysteinyl-tRNA synthetases, and the aspartyl-tRNA synthetase from yeast, utilized both isomeric tRNAs as substrates, although generally not at the same rate. While the calf liver aspartyl- and cysteinyl-tRNA synthetases utilized only the corresponding modified tRNA species terminating in 2'-deoxyadenosine, the use of a more concentrated enzyme preparation might well result in aminoacylation of the isomeric species. The one tRNA for which positional specificity does seem to have changed during evolution is tryptophan, whose E. coli aminoacyl-tRNA synthetase utilized predominantly the cognate tRNA terminating in 3'-deoxyadenosine, while the corresponding yeast and calf liver enzymes were found to utilize predominantly the isomeric tRNAs terminating in 2'-deoxyadenosine. The data presented indicate that while there is considerable diversity in the initial position of aminoacylation of individual tRNA isoacceptors derived from a single source, positional specificity has generally been conserved during the evolution from a prokaryotic to mammalian organism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012910 Snake Venoms Solutions or mixtures of toxic and nontoxic substances elaborated by snake (Ophidia) salivary glands (Duvernoy's gland) for the purpose of killing prey or disabling predators and delivered by grooved or hollow fangs. They usually contain enzymes, toxins, and other factors. Duvernoy's Gland Secretion,Duvernoy's Secretion,Snake Toxin,Snake Toxins,Snake Venom,Duvernoy Gland Secretion,Duvernoy Secretion,Duvernoys Gland Secretion,Duvernoys Secretion,Secretion, Duvernoy's,Secretion, Duvernoy's Gland,Toxin, Snake,Venom, Snake
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
February 1976, Proceedings of the National Academy of Sciences of the United States of America,
A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
September 1977, The Journal of biological chemistry,
A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
September 1977, Biochemistry,
A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
October 1974, Biochimica et biophysica acta,
A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
January 1969, Journal of molecular biology,
A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
January 1995, Biochimie,
A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
August 1993, Biochemistry,
A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
March 1970, Biochimica et biophysica acta,
A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
February 2008, Methods (San Diego, Calif.),
A C Chinault, and K H Tan, and S M Hassur, and S M Hecht
February 2000, Current opinion in structural biology,
Copied contents to your clipboard!