Phosphorylation and inactivation of the pyruvate dehydrogenase from the anaerobic parasitic nematode, Ascaris suum. Stoichiometry and amino acid sequence around the phosphorylation sites. 1988

J Thissen, and R Komuniecki
Department of Biology, University of Toledo, Ohio 43606.

Tryptic digestion of the fully phosphorylated Ascaris suum pyruvate dehydrogenase complex yielded a single tetradecapeptide containing 2 phosphorylated serine residues. Its amino acid sequence was Tyr-Ser-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Ser(P)-Tyr-Arg and was very similar to one of the tryptic phosphopeptides isolated from mammalian and yeast pyruvate dehydrogenases. At partial phosphorylation, three peptides were isolated which corresponded to the monophosphorylated (sites 1 and 2) and diphosphorylated tetradecapeptides. In contrast to results reported from mammalian complexes, phosphorylation of the ascarid complex paralleled inactivation, and no additional phosphorylation occurred after inactivation was complete. Complete inactivation of the complex was associated with the incorporation of 1.7-1.9 mol of phosphoryl groups/mol of alpha-pyruvate dehydrogenase subunit, and the strict preference of the pyruvate dehydrogenase kinase for site 1 was not observed. Whereas site 1 was initially phosphorylated more rapidly than site 2, at 50% inactivation, 41% of the incorporated phosphoryl groups were incorporated into site 2. In addition, substantial amounts of peptide monophosphorylated at site 2 also accumulated, suggesting that prior phosphorylation at site 1 was not necessary for phosphorylation at site 2. Phosphorylation also caused a marked decrease in the mobility of the alpha-pyruvate dehydrogenase subunit on sodium dodecyl sulfate-polyacrylamide gels and the apparent separation of mono- and diphosphorylated forms of the enzyme. The significance of these observations in the regulation of the unique anaerobic mitochondrial metabolism of A. suum is discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001200 Ascaris A genus of nematodes of the superfamily ASCARIDOIDEA whose species usually inhabit the intestine. Ascari

Related Publications

J Thissen, and R Komuniecki
December 1997, Molecular and biochemical parasitology,
J Thissen, and R Komuniecki
June 1983, Molecular and biochemical parasitology,
Copied contents to your clipboard!