Tubulin gene expression in the Chlamydomonas reinhardtii cell cycle: elimination of environmentally induced artifacts and the measurement of tubulin mRNA levels. 1988

D S Nicholl, and J A Schloss, and P C John
Department of Biology, Paisley College of Technology, Scotland.

To investigate the involvement of tubulin gene expression in controlling cell division events in Chlamydomonas reinhardtii we have measured tubulin mRNA levels during the cell cycle under different environmental conditions. In C. reinhardtii cells grown under the synchronizing conditions of 14 h of light followed by 10 h of darkness, mRNAs for tubulin and associated flagellar proteins were found to accumulate periodically with a peak just prior to cell division. This was not seen when previously synchronized cells were transferred to constant environmental conditions in a turbidostat, suggesting that dramatic changes in tubulin mRNA levels are not required for successful completion of the cell cycle. A hypothesis to explain the patterns of tubulin mRNA accumulation found under different environmental conditions is presented.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002696 Chlamydomonas A genus GREEN ALGAE in the order VOLVOCIDA. It consists of solitary biflagellated organisms common in fresh water and damp soil. Chlamydomona
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014404 Tubulin A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE. alpha-Tubulin,beta-Tubulin,delta-Tubulin,epsilon-Tubulin,gamma-Tubulin,alpha Tubulin,beta Tubulin,delta Tubulin,epsilon Tubulin,gamma Tubulin

Related Publications

D S Nicholl, and J A Schloss, and P C John
January 1986, Annals of the New York Academy of Sciences,
D S Nicholl, and J A Schloss, and P C John
June 1992, Nucleic acids research,
D S Nicholl, and J A Schloss, and P C John
January 1993, Cell motility and the cytoskeleton,
D S Nicholl, and J A Schloss, and P C John
March 1998, Molecular and cellular biology,
D S Nicholl, and J A Schloss, and P C John
June 2007, Nature,
D S Nicholl, and J A Schloss, and P C John
January 1992, Cell motility and the cytoskeleton,
D S Nicholl, and J A Schloss, and P C John
August 2007, Eukaryotic cell,
Copied contents to your clipboard!