Quantitative analyses of the relationship between C3 consumption, C3b capture, and immune adherence of complement-fixing antibody/DNA immune complexes. 1988

J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
Department of Biochemistry, University of Virginia, School of Medicine, Charlottesville 22908.

We have studied the turnover of the third component of C (C3) and capture of the major cleavage fragment of C3 produced during C activation (C3b) that occurs when soluble antibody/DNA immune complexes (IC) active C. We used the Amersham RIA kit for the minor cleavage fragment of C3 produced during C activation (C3a), and a new assay utilizing mAb to C3b to measure the fraction of active C3 in a C source after the IC activate C. These mAb, along with a mAb to human IgG, allowed us to measure IC stoichiometries. The efficiency of C3 turnover by the IC is quite high, and under conditions of Ab excess, the maximum number of IgG bound per dsDNA corresponds to 1 IgG/20 to 30 base pairs. The maximum number of C3b found in the IC corresponds to less than 1 C3b/IgG, and the vast majority of the captured C3b is bound to the IgG, and not to the DNA. We identified several IC that consumed large amounts of C3, and captured large amounts of C3b, but did not bind to human E via C3b receptors (C receptor type 1). This finding suggests that the ability of IC to bind to human E depends upon the number and distribution of captured C3b molecules and the conformation and size of the DNA Ag, which reflects the need for multivalent binding between several properly arrayed C3b and a "cluster" of C receptor type 1 on the human E membrane. IC that activate C3 but do not bind to E would presumably "escape" the E IC clearance mechanism, but could deposit in susceptible organs and tissues and play a role in the pathogenesis of SLE because of their potential to generate the inflammatory products of C activation.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D003168 Complement Fixation Tests Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1. Complement Absorption Test, Conglutinating,Conglutination Reaction,Conglutinating Complement Absorption Test,Complement Fixation Test,Conglutination Reactions,Fixation Test, Complement,Fixation Tests, Complement,Reaction, Conglutination,Reactions, Conglutination,Test, Complement Fixation,Tests, Complement Fixation
D003171 Complement Pathway, Classical Complement activation initiated by the binding of COMPLEMENT C1 to ANTIGEN-ANTIBODY COMPLEXES at the COMPLEMENT C1Q subunit. This leads to the sequential activation of COMPLEMENT C1R and COMPLEMENT C1S subunits. Activated C1s cleaves COMPLEMENT C4 and COMPLEMENT C2 forming the membrane-bound classical C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX. Classical Complement Pathway,Classical Complement Activation Pathway,Complement Activation Pathway, Classical
D003176 Complement C3 A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase. C3 Complement,C3 Precursor,Complement 3,Complement C3 Precursor,Complement Component 3,Precursor-Complement 3,Pro-C3,Pro-Complement 3,C3 Precursor, Complement,C3, Complement,Complement, C3,Component 3, Complement,Precursor Complement 3,Precursor, C3,Precursor, Complement C3,Pro C3,Pro Complement 3
D003179 Complement C3b The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g. C3b Complement,C3bi,Complement 3b,Complement Component 3b,Inactivated C3b,iC3b,C3b, Complement,C3b, Inactivated,Complement, C3b,Component 3b, Complement
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune

Related Publications

J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
December 1989, Journal of immunology (Baltimore, Md. : 1950),
J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
March 1986, Scandinavian journal of gastroenterology,
J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
December 1987, Journal of immunology (Baltimore, Md. : 1950),
J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
January 1990, Terapevticheskii arkhiv,
J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
May 1977, Clinical and experimental immunology,
J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
November 1984, Clinical immunology and immunopathology,
J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
January 1981, Methods in enzymology,
J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
February 1984, The Australian journal of experimental biology and medical science,
J C Edberg, and L Tosic, and E L Wright, and W M Sutherland, and R P Taylor
October 1984, Molecular immunology,
Copied contents to your clipboard!