32P-Postlabeling Analysis of DNA Adducts. 2020

David H Phillips, and Volker M Arlt
Department of Analytical, Environmental & Forensic Sciences, MRC-PHE Centre for Environmental & Health, King's College London, London, UK. david.phillips@kcl.ac.uk.

32P-Postlabeling analysis is an ultra-sensitive method for the detection of DNA adducts, such as those formed directly by the covalent binding of carcinogens and mutagens to bases in DNA, and other DNA lesions resulting from modification of bases by endogenous or exogenous agents (e.g., oxidative damage). The procedure involves four main steps: enzymatic digestion of DNA sample; enrichment of the adducts; radiolabeling of the adducts by T4 kinase-catalyzed transference of 32P-orthophosphate from [γ-32P]ATP; chromatographic separation of labeled adducts, and detection and quantification by means of their radioactive decay. Using 10 μg of DNA or less, it is capable of detecting adduct levels as low as 1 adduct in 109-1010 normal nucleotides. It is applicable to a wide range of investigations, including monitoring human exposure to environmental or occupational carcinogens, determining whether a chemical has genotoxic properties, analysis of the genotoxicity of complex mixtures, elucidation of the pathways of activation of carcinogens, and monitoring DNA repair.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

David H Phillips, and Volker M Arlt
May 1995, Toxicology letters,
David H Phillips, and Volker M Arlt
January 1996, Carcinogenesis,
David H Phillips, and Volker M Arlt
January 1982, Carcinogenesis,
David H Phillips, and Volker M Arlt
October 1993, Cancer letters,
David H Phillips, and Volker M Arlt
January 1990, Teratogenesis, carcinogenesis, and mutagenesis,
David H Phillips, and Volker M Arlt
January 1990, Basic life sciences,
David H Phillips, and Volker M Arlt
January 1987, Progress in experimental tumor research,
David H Phillips, and Volker M Arlt
May 2010, Environmental and molecular mutagenesis,
David H Phillips, and Volker M Arlt
August 1988, Carcinogenesis,
David H Phillips, and Volker M Arlt
December 1987, Cancer research,
Copied contents to your clipboard!