1. Somata of primary afferent fibers were impaled in the L7 or S1 dorsal root ganglion in cats anesthetized with alpha-chloralose. Individual cells (n = 182) were characterized according to receptive field (RF) and by the peripheral mechanoreceptor they innervated. They were then stimulated intracellularly while recording the evoked cord dorsum potentials (CDPs) simultaneously at four sites. CDPs were recorded in response to single fiber stimulation while varying both the frequency and the numbers of action potentials (APs) evoked per trial. Stimulus parameters included: 1) single APs evoked at both high (18 Hz) and low (0.67 Hz) frequencies, 2) pairs of APs (50-ms ISI) delivered at 0.67 Hz, and 3) trains of four APs (20-ms ISI) also delivered at 0.67 Hz. The properties of the CDPs and their relationship to receptor type innervated by the fiber were determined. 2. CDPs evoked by 18-Hz stimulation consisted of an axon fiber spike followed at a short latency [600 +/- 9.9 (SEM) microseconds] by the onset of a monophasic negative wave. A-beta-afferent fibers innervating slowly adapting type 1 and 2 receptors (SA1 and SA2) evoked the largest amplitude CDPs followed by field and hair follicle afferents while A-delta-fibers rarely produced measurable CDPs at this frequency of stimulation. 3. The magnitude of the CDP varied at the four recording sites with clear evidence in individual experiments that the projections of individual fibers are somatotopically organized. 4. CDPs evoked by 0.67-Hz stimulation had the same onset latency but were larger in amplitude and had longer time-to-peak and durations than those elicited by high frequency stimulation. Under these conditions A-beta-fibers innervating hair follicles produced the largest CDPs followed by field receptors and SA1s and SA2s. A-beta- and A-delta-fibers innervating high threshold mechanoreceptors (HTMRs) and A-delta-fibers innervating down hair follicles (D-hairs) produced CDPs of amplitude and duration similar to those evoked by slower A-beta-fibers. 5. The response to a test stimulus delivered 50 ms after a conditioning stimulus to the same single fiber was always depressed in the case of A-beta-fibers supplying rapidly adapting receptors. The conditioning stimulus exerted relatively little effect on the response to the test stimulus for A-beta- fibers innervating slowly adapting receptors. The test response to stimulation of A-beta- and A-delta- fibers innervating HTMRs was consistently facilitated while stimulation of A-delta- D-hairs evoked either marked facilitation or slight depression.(ABSTRACT TRUNCATED AT 400 WORDS)