Microbiota Induced Changes in the Immune Response in Pregnant Mice. 2019

Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.

Pregnancy is associated with adaptations of the immune response and with changes in the gutmicrobiota. We hypothesized the gut microbiota are involved in inducing (part of) the immunological adaptations during pregnancy. To test this hypothesis, we collected feces from pregnant conventional mice before and during pregnancy (days 7, 14, and 18) and microbiota were measured using 16S RNA sequencing. At day 18, mice were sacrificed and splenic (various Th cell populations) and blood immune cells (monocyte subsets) were measured by flow cytometry. The data were compared with splenic and blood immune cell populations from pregnant (day 18) germfree mice and non-pregnant conventional and germfree mice. Finally, the abundances of the individual gut bacteria in the microbiota of each conventional pregnant mouse were correlated to the parameters of the immune response of the same mouse. The microbiota of conventional mice were significantly different at the end of pregnancy (day 18) as compared with pre-pregnancy (Permanova, p < 0.05). The Shannon index was decreased and the Firmicutes/Bacteroidetes ratio was increased (Friedman followed by Dunn's test, p < 0.05), while abundances of various species (such as Allobaculum stercoricanis, Barnesiella intestihominis, and Roseburia faecis) were significantly different at day 18 compared with pre-pregnancy. In pregnant conventional mice, the percentage of Th1 cells was decreased, while the percentages of Treg cells and Th2 cells were or tended to be increased vs. non-pregnant mice. In germfree mice, only the percentage of Th1 cells was decreased in pregnant vs. non-pregnant mice, with no effect of pregnancy on Treg and Th2 cells. The percentages of monocyte subsets were affected by pregnancy similarly in conventional and germfree mice. However, the activation status of monocytes (expression of CD80 and MHCII) was affected by pregnancy mainly in conventional mice, and not in germfree mice. Correlation (Spearman's coefficient) of pregnancy affected microbiota with pregnancy affected immune cells, i.e., immune cells that were only affected differently in conventional mice and germfree mice, showed 4 clusters of bacteria and 4 clusters of immune cells, some of these clusters were correlated with each other. For instance, the microbiota in cluster 1 and 2 (in which there were various short chain fatty acid producing microbiota) are positively correlated with immune cells in cluster B, containing Treg cells and Th2 cells. Microbiota and immune cells are affected by pregnancy in mice. The different immunological adaptations to pregnancy between conventional and germfree mice, such as the increase in Treg and tendency to an increase in Th2 cells in conventional pregnant mice only, may suggest that the microbiota may play a role in adapting the maternal immune response to pregnancy.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000069196 Gastrointestinal Microbiome All of the microbial organisms that naturally exist within the GASTROINTESTINAL TRACT. Enteric Bacteria,Gastric Microbiome,Gastrointestinal Flora,Gastrointestinal Microbial Community,Gastrointestinal Microbiota,Gastrointestinal Microflora,Gut Flora,Gut Microbiome,Gut Microbiota,Gut Microflora,Intestinal Flora,Intestinal Microbiome,Intestinal Microbiota,Intestinal Microflora,Bacteria, Enteric,Flora, Gastrointestinal,Flora, Gut,Flora, Intestinal,Gastric Microbiomes,Gastrointestinal Microbial Communities,Gastrointestinal Microbiomes,Gastrointestinal Microbiotas,Gut Microbiomes,Gut Microbiotas,Intestinal Microbiomes,Intestinal Microbiotas,Microbial Community, Gastrointestinal,Microbiome, Gastric,Microbiome, Gastrointestinal,Microbiome, Gut,Microbiome, Intestinal,Microbiota, Gastrointestinal,Microbiota, Gut,Microbiota, Intestinal,Microflora, Gastrointestinal,Microflora, Gut,Microflora, Intestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell

Related Publications

Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
August 1975, The Tohoku journal of experimental medicine,
Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
August 2023, PLoS neglected tropical diseases,
Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
June 2018, Research in veterinary science,
Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
February 2020, Molecular immunology,
Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
August 2022, International microbiology : the official journal of the Spanish Society for Microbiology,
Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
January 2024, Frontiers in immunology,
Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
January 1983, Medicina,
Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
January 2022, Frontiers in pharmacology,
Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
December 2023, Journal of the science of food and agriculture,
Marijke M Faas, and Yuanrui Liu, and Theo Borghuis, and Carolien A van Loo-Bouwman, and Hermie Harmsen, and Paul de Vos
July 2018, Gastroenterology,
Copied contents to your clipboard!