Functional organization of the callosal connections of the cat auditory cortex. 1988

G T Bozhko, and A F Slepchenko
Biological Institute, State University, Leningrad.

In acute experiments on immobilized cats, using a method of topographical recording of homotopic and heterotopic transcallosal responses, the functional organization of the callosal connections of the auditory cortex was investigated. It was established that the homotopic potentials of the primary projection field (AI) have the greatest amplitude, minimal temporal parameters, and the maximal stability of these characteristics as compared with the associative fields of the auditory cortex (AII, AIV, Ep). The heterotropic transcallosal responses in field AI appeared during stimulation of the analogous field, while in field Ep, they were recorded both during stimulation of the analogous field, and of fields AI and AII of the opposite hemisphere. It is hypothesized that the structure of the transcallosal connections of the primary projection field s of the auditory cortex is characterizised by homotopy, whereas in the associative auditory fields the role of heterotopic transcallosal interactions increases. It is possible that such a structure of the transcallosal connections assures a significant role for interhemispheric interactins in the mechanisms of spatial audition.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory

Related Publications

G T Bozhko, and A F Slepchenko
September 1997, Experimental brain research,
G T Bozhko, and A F Slepchenko
February 1983, Brain research,
G T Bozhko, and A F Slepchenko
September 1959, Journal of neurophysiology,
G T Bozhko, and A F Slepchenko
November 1993, The European journal of neuroscience,
G T Bozhko, and A F Slepchenko
March 1999, The European journal of neuroscience,
G T Bozhko, and A F Slepchenko
October 1983, Arkhiv anatomii, gistologii i embriologii,
G T Bozhko, and A F Slepchenko
January 1970, Journal of neurophysiology,
G T Bozhko, and A F Slepchenko
July 2001, Proceedings of the National Academy of Sciences of the United States of America,
G T Bozhko, and A F Slepchenko
December 1984, The Journal of comparative neurology,
Copied contents to your clipboard!