Characterization of GABA- and glycine-induced currents of solitary rodent retinal ganglion cells in culture. 1988

D L Tauck, and M P Frosch, and S A Lipton
Department of Neurology, Children's Hospital, Boston, MA 02115.

Ganglion cells were fluorescently labeled, dissociated from 7- to 11-day-old rodent retinas, and placed in tissue culture. Whole-cell recordings with patch electrodes were obtained from solitary cells lacking processes, which permitted a high-quality space clamp. Both GABA (1-200 microM) and glycine (10-300 microM) produced large increases in membrane conductance in virtually every ganglion cell tested, including ganglion cells from different size classes in both rats and mice. Taurine evoked responses similar to those of glycine, but considerably greater concentrations of taurine (150-300 microM) were necessary to observe any effect. Since 20 microM GABA produced approximately the same response as 100 microM glycine, the effects of these two concentrations were compared under various conditions. When recording with chloride distributed equally across the membrane, the reversal potential of the agonist-induced currents was approximately 0 mV. When the internal chloride was reduced by substitution with aspartate, the reversal potential shifted in a negative direction by about 42 mV, indicating that the current was carried mainly by chloride ions. Strychnine (1-5 microM) completely and reversibly blocked the actions of glycine (100 microM) but not those of GABA (20 microM); however, higher concentrations of strychnine (20 microM) nearly totally inhibited the current elicited by GABA (20 microM). The responses to glycine (100 microM) were not affected by bicuculline methiodide (20 microM) or picrotoxinin (20 microM). In contrast, bicuculline methiodide (10 microM) and picrotoxinin (10 microM) reversibly blocked the current evoked by GABA (20 microM); d-tubocurarine (100 microM) only slightly decreased the response to GABA (20 microM). The antagonists were effective over a wide range of holding potentials (-90 mV to +30 mV). The responses to a steady application of both GABA and glycine decayed in a few seconds when recorded under conditions of both symmetric and asymmetric chloride across the membrane. During this decay the current and conductance decreased simultaneously, reflecting receptor desensitization rather than a change in the driving force for chloride caused by agonist-induced ionic fluxes. The time-course of desensitization was usually described by a single exponential with time constants for GABA (20 microM) and glycine (100 microM) of 4.0 +/- 1.6 s and 4.4 +/- 1.9 s (mean +/- S.D.), respectively.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

D L Tauck, and M P Frosch, and S A Lipton
August 1994, Neuroreport,
D L Tauck, and M P Frosch, and S A Lipton
October 2007, Neuroreport,
D L Tauck, and M P Frosch, and S A Lipton
August 1988, Journal of neurophysiology,
D L Tauck, and M P Frosch, and S A Lipton
September 2011, Brain research,
D L Tauck, and M P Frosch, and S A Lipton
February 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D L Tauck, and M P Frosch, and S A Lipton
May 1998, The Journal of physiology,
D L Tauck, and M P Frosch, and S A Lipton
January 2023, Methods in molecular biology (Clifton, N.J.),
D L Tauck, and M P Frosch, and S A Lipton
July 1995, The Journal of physiology,
D L Tauck, and M P Frosch, and S A Lipton
October 1998, Journal of neurophysiology,
D L Tauck, and M P Frosch, and S A Lipton
January 1994, The Japanese journal of physiology,
Copied contents to your clipboard!