Axon diameter distributions across the monkey's optic nerve. 1988

B E Reese, and K Y Ho
University of Oxford, Department of Human Anatomy, U.K.

The distribution of axons according to diameter has been examined in the optic nerve of old world monkeys. Axon diameters were measured from electron micrographs, and histograms were constructed at regular intervals across a section through the optic nerve to reveal the local axon diameter distribution. The total axon diameter distribution was also estimated. Fine-calibre optic axons (less than 2.0 micron in diameter) are found at all locations across the optic nerve. They are most frequent centrotemporally, where very few coarse optic axons can be found, but also make up the majority at the optic nerve's periphery. Coarse optic axons (greater than 2.0 microns in diameter) are increasingly common at progressively peripheral positions in the nerve. Around the nerve's circumference, these coarse optic axons are least numerous temporally, and most common dorsonasally. The axon diameter distribution peaks around 1.25 microns at most locations across the optic nerve, but there are more, slightly larger (1.5-2.0 microns), optic axons dorsally than ventrally. The estimated total axon diameter distribution is unimodal, peaking at 1.0-1.25 microns, with an extended tail towards larger diameters. This centroperipheral gradient of increasing axon diameters across the optic nerve is not substantial enough to account for the partial segregation of axons by size in the monkey's optic tract: there, coarse optic axons form a conspicuously greater proportion of the local axon diameter distribution along the tract's superficial (sub-pial) border, and fine optic axons are the only axons present near the tract's deep border. Hence, the fibre distribution in the optic tract cannot be formed by a simple combination of the fibre distributions of the two respective half-nerves, as described in the classic neuro-ophthalmologic literature. Rather, the present results, in conjunction with previous results from the optic tract, demonstrate that there must be a reorganization of axons by size in or near the optic chiasm.

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

B E Reese, and K Y Ho
September 1989, Ophthalmology,
B E Reese, and K Y Ho
June 1987, The Journal of comparative neurology,
B E Reese, and K Y Ho
November 1985, Bulletin de l'Academie nationale de medecine,
B E Reese, and K Y Ho
January 2017, Current neuropharmacology,
B E Reese, and K Y Ho
September 2020, Annual review of vision science,
B E Reese, and K Y Ho
January 2012, International review of neurobiology,
B E Reese, and K Y Ho
November 1975, Physics in medicine and biology,
Copied contents to your clipboard!