Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide. 1988

D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
Department of Zoology, University of Lund, Sweden.

Different antisera to the molluscan cardioexcitatory peptide FMRFamide, and its fragment, RFamide (Arg-Phe-NH2), label a distinct population of neurons in the optic lobe of the blowfly, Calliphora erythrocephala. Seven morphological types of RFamide/FMRFamide-like immunoreactive neurons could be distinguished in the optic lobes based on the locations of their cell bodies, their axonal projections and the distribution of their processes. Of these, two types could be resolved in their entire extent, the others were labeled only in their cell bodies and terminal processes or were partly obscured by other immunoreactive processes. The RF-like immunoreactive neurons in the optic lobes are of two main classes: (1) two types of large field projection neurons and (2) five types of local neurons. One type of projection neurons (five in each lobe) connects the entire projected retinal mosaic of the medulla and lobula in the optic lobe with protocerebral centres associated with the mushroom body calyx. The other type (2-3 invading each lobe) has cell bodies in the protocerebrum and contralateral processes invading optic lobes. Of the class of local neurons there are two amacrine RF-like immunoreactive neurons in each medulla. Each of these amacrines supplies the entire mosaic with fine processes. The remaining local RF-like immunoreactive neurons are present in relatively large numbers (one type in more than 2000 copies in each medulla) and-supply the medulla, lobula and lobula plate neuropils with fine varicose processes. In the medulla the RF-like immunoreactive processes are arranged in strict layers whereas in the lobula complex the distribution is diffuse. Electron microscopic immunocytochemistry, using both pre-embedding immuno peroxidase-antiperoxidase and post-embedding protein A-gold labeling, was employed for analysis of cytology and synaptic connections of RF-like immunoreactive neurons in the medulla. The varicosities of the processes of the large field projection neurons were not found to make chemical synapses with other neurons in the medulla. The spines of the RF-like immunoreactive processes of the large medulla amacrines, however, make pre- and postsynaptic contacts with other neural elements. Our findings indicate that an RFamide/FMRFamide-like substance may be used as a neurotransmitter or neuromodulator by optic lobe neurons of different types. The local and projection RF-like immunoreactive pathways probably play different roles in visual processing.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D009899 Optic Lobe, Nonmammalian In invertebrate zoology, a lateral lobe of the FOREBRAIN in certain ARTHROPODS. In vertebrate zoology, either of the corpora bigemina of non-mammalian VERTEBRATES. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1329) Corpora Bigemina,Optic Lobe, Non-Mammalian,Bigemina, Corpora,Non-Mammalian Optic Lobe,Non-Mammalian Optic Lobes,Nonmammalian Optic Lobe,Nonmammalian Optic Lobes,Optic Lobe, Non Mammalian,Optic Lobes, Non-Mammalian,Optic Lobes, Nonmammalian
D004175 Diptera An order of the class Insecta. Wings, when present, number two and distinguish Diptera from other so-called flies, while the halteres, or reduced hindwings, separate Diptera from other insects with one pair of wings. The order includes the families Calliphoridae, Oestridae, Phoridae, SARCOPHAGIDAE, Scatophagidae, Sciaridae, SIMULIIDAE, Tabanidae, Therevidae, Trypetidae, CERATOPOGONIDAE; CHIRONOMIDAE; CULICIDAE; DROSOPHILIDAE; GLOSSINIDAE; MUSCIDAE; TEPHRITIDAE; and PSYCHODIDAE. The larval form of Diptera species are called maggots (see LARVA). Flies, True,Flies,Dipteras,Fly,Fly, True,True Flies,True Fly
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019835 FMRFamide A molluscan neuroactive peptide which induces a fast excitatory depolarizing response due to direct activation of amiloride-sensitive SODIUM CHANNELS. (From Nature 1995; 378(6558): 730-3) FMRF,FMRF-NH2,FMRF-amide,FMRFamide, (D-Arg)-Isomer,FMRFamide, (D-Met)-Isomer,FMRFamide, (D-Phe)-Isomer,FMRFamide, (D-phenylalanine)-Isomer,Phe-Met-Arg-Phe-NH2,Phe-Met-Arg-Phe-amide,FMRF NH2,FMRF amide,Phe Met Arg Phe amide

Related Publications

D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
January 1988, Journal of chemical neuroanatomy,
D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
September 1988, Cell and tissue research,
D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
January 1986, Medical biology,
D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
January 1995, Acta biologica Hungarica,
D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
January 1991, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
June 1984, Brain research,
D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
April 1994, Hippocampus,
D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
May 1985, The Journal of comparative neurology,
D R Nässel, and L G Ohlsson, and K U Johansson, and C J Grimmelikhuijzen
January 1993, Journal of neuroscience methods,
Copied contents to your clipboard!