Effects of purinoceptor agonists on electrophysiological properties of rat mesencephalic trigeminal neurones in vitro. 1988

J T Regenold, and H L Haas, and P Illes
Department of Pharmacology, University of Freiburg, F.R.G.

Intracellular recordings were performed in a midpontine slice preparation of the rat brain containing the mesencephalic trigeminal nucleus (MTN). In spite of the previous demonstration of an adenosine deaminase-containing plexus terminating on this nucleus, adenosine, adenosine 5'-triphosphate (ATP), alpha,beta-methylene ATP (alpha,beta-meATP) and 2-methylthio ATP all failed to influence the membrane potential or input resistance of the MTN cells. Moreover, there was no apparent change in the shape of action potentials in the presence of these drugs, and the accomodation of the firing rate to depolarizing pulses was not affected either.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013873 Thionucleotides Nucleotides in which the base moiety is substituted with one or more sulfur atoms.
D014276 Trigeminal Nerve The 5th and largest cranial nerve. The trigeminal nerve is a mixed motor and sensory nerve. The larger sensory part forms the ophthalmic, mandibular, and maxillary nerves which carry afferents sensitive to external or internal stimuli from the skin, muscles, and joints of the face and mouth and from the teeth. Most of these fibers originate from cells of the TRIGEMINAL GANGLION and project to the TRIGEMINAL NUCLEUS of the brain stem. The smaller motor part arises from the brain stem trigeminal motor nucleus and innervates the muscles of mastication. Cranial Nerve V,Fifth Cranial Nerve,Nerve V,Nervus Trigeminus,Cranial Nerve, Fifth,Fifth Cranial Nerves,Nerve V, Cranial,Nerve Vs,Nerve, Fifth Cranial,Nerve, Trigeminal,Trigeminal Nerves,Trigeminus, Nervus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J T Regenold, and H L Haas, and P Illes
July 1993, Archives of oral biology,
J T Regenold, and H L Haas, and P Illes
April 1995, Neuroreport,
J T Regenold, and H L Haas, and P Illes
January 1997, British journal of pharmacology,
J T Regenold, and H L Haas, and P Illes
September 1999, The Journal of physiology,
J T Regenold, and H L Haas, and P Illes
June 1996, British journal of pharmacology,
J T Regenold, and H L Haas, and P Illes
June 1988, Brain research,
J T Regenold, and H L Haas, and P Illes
March 1995, European journal of pharmacology,
J T Regenold, and H L Haas, and P Illes
February 1996, British journal of pharmacology,
J T Regenold, and H L Haas, and P Illes
January 1983, The Journal of physiology,
Copied contents to your clipboard!