Intraretinal axons of ganglion cells in the Japanese monkey (Macaca fuscata): conduction velocity and diameter distribution. 1988

Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
Department of Neurophysiology, Osaka University Medical School, Japan.

In anesthetized and immobilized Japanese monkeys (Macaca fuscata), intraretinal conduction velocities of the ganglion cell axons were measured. The field potentials elicited by optic chiasm shocks consisted of fast and slow components with estimated conduction velocities of 1.19 and 0.72 m/s in recordings from the optic nerve fiber layer, and 1.65 and 1.00 m/s in recordings from the ganglion cell layer. Single cell recordings verified that the time course of the fast component corresponded to the antidromic spike latencies of Y-like cells, whereas that of the slow component covered the latency range of both X-like and W-like cells. In an electron microscopic study of the cross-sections of the intraretinal optic nerve fiber bundles, the axon diameter histograms of large samples (n = 3000-6000) all showed a unimodal distribution with a sharp peak at 0.3-0.6 micron and a long tail extending to 2-3 micron. The mean diameter was largest in the ventral and nasal bundles, smallest in the papillomacular bundle and intermediate in the dorsal, upper arcuate and lower arcuate bundles. However, diameter histograms of a small number of regional axons (n = 255-300) showed a broad tail distinct from the peak at 0.3-0.6 micron, enabling us to segregate a group of larger axons from the medium-sized to small axons. From such regional axon diameter histograms we estimated the mean relative occurrences of the larger axons (7.1-11.3%) and their mean diameters (0.9-1.3 micron). We further applied this relative frequency to the unimodal distribution of the histograms with larger samples in the upper and lower arcuate bundles and estimated the mean axon diameter of the large axons (1.1 micron) and that of the medium-sized to small axons (slightly below 0.5 micron). Finally, in studying the relation between axon diameter and conduction velocity in the two arcuate fiber bundles, we found it to be somewhat different from that previously reported for the cat retina.

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009897 Optic Chiasm The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
January 1995, Veterinary pathology,
Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
March 1972, Journal of applied physiology,
Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
January 1994, Scanning microscopy,
Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
June 2002, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada,
Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
January 1973, Jikken dobutsu. Experimental animals,
Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
June 1987, The Journal of comparative neurology,
Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
December 1988, Nichidai koku kagaku = Nihon University journal of oral science,
Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
October 1992, Okajimas folia anatomica Japonica,
Y Fukuda, and M Watanabe, and K Wakakuwa, and H Sawai, and K Morigiwa
January 1990, The Journal of comparative neurology,
Copied contents to your clipboard!