Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Proliferation of Allogeneic Endometrial Stromal Cells. 2020

Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.

Umbilical cord mesenchymal stem cells (UCMSCs) have been proposed as an ideal source for cell-based therapy to promote endometrial repair and regeneration. Furthermore, increasing evidence has indicated that UCMSC-derived exosomes (UCMSC-exos) act as important paracrine mediators to recapitulate the features of MSCs and may play a vital role in this process. UCMSCs and human endometrial stromal cells (ESCs) were isolated and characterized. ESCs were cocultured with UCMSCs and further assessed by flow cytometry and EdU incorporation assays. UCMSC-exos were extracted by differential ultracentrifugation and identified by western blots, transmission electron microscopy, and nanoparticle tracking analysis. The internalization of UCMSC-exos by ESCs was observed under a confocal microscope. ESCs were treated with UCMSC-exos at different concentrations and for different durations, with cell viability evaluated by CCK-8 assays. The cell cycle analysis showed that the percentage of ESCs in S phase significantly increased after coculture with UCMSCs, whereas it significantly decreased after inhibition of UCMSC-exo secretions. EdU incorporation assays also showed a similar trend. The isolated UCMSC-exos had a typical cup-shaped morphology with a monolayer membrane, expressed the specific exosomal markers Alix, CD63, and TSG101 and were approximately 60 to 200 nm in diameter. The PKH26-labeled UCMSC-exos were incorporated into ESCs. Moreover, UCMSC-exos enhanced the cell growth and viability of ESCs in a dose-dependent manner, and the effects occurred in a short period of time. UCMSC-exos promote the proliferation of ESCs in a dose-dependent manner; thus, they could be used as a potential treatment to promote endometrial repair.

UI MeSH Term Description Entries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004717 Endometrium The mucous membrane lining of the uterine cavity that is hormonally responsive during the MENSTRUAL CYCLE and PREGNANCY. The endometrium undergoes cyclic changes that characterize MENSTRUATION. After successful FERTILIZATION, it serves to sustain the developing embryo. Endometria
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014470 Umbilical Cord The flexible rope-like structure that connects a developing FETUS to the PLACENTA in mammals. The cord contains blood vessels which carry oxygen and nutrients from the mother to the fetus and waste products away from the fetus. Cord, Umbilical,Cords, Umbilical,Umbilical Cords
D017154 Stromal Cells Connective tissue cells of an organ found in the loose connective tissue. These are most often associated with the uterine mucosa and the ovary as well as the hematopoietic system and elsewhere. Cell, Stromal,Cells, Stromal,Stromal Cell
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D055354 Exosomes A type of extracellular vesicle, containing RNA and proteins, that is secreted into the extracellular space by EXOCYTOSIS when MULTIVESICULAR BODIES fuse with the PLASMA MEMBRANE.
D059630 Mesenchymal Stem Cells Mesenchymal stem cells, also referred to as multipotent stromal cells or mesenchymal stromal cells are multipotent, non-hematopoietic adult stem cells that are present in multiple tissues, including BONE MARROW; ADIPOSE TISSUE; and WHARTON JELLY. Mesenchymal stem cells can differentiate into mesodermal lineages, such as adipocytic, osteocytic and chondrocytic. Adipose Tissue-Derived Mesenchymal Stem Cell,Adipose Tissue-Derived Mesenchymal Stromal Cell,Adipose-Derived Mesenchymal Stem Cell,Bone Marrow Mesenchymal Stem Cell,Mesenchymal Stromal Cell,Mesenchymal Stromal Cells,Multipotent Bone Marrow Stromal Cell,Multipotent Mesenchymal Stromal Cell,Adipose Tissue-Derived Mesenchymal Stem Cells,Adipose Tissue-Derived Mesenchymal Stromal Cells,Adipose-Derived Mesenchymal Stem Cells,Adipose-Derived Mesenchymal Stromal Cells,Bone Marrow Mesenchymal Stem Cells,Bone Marrow Stromal Cell,Bone Marrow Stromal Cells,Bone Marrow Stromal Cells, Multipotent,Bone Marrow Stromal Stem Cells,Mesenchymal Progenitor Cell,Mesenchymal Progenitor Cells,Mesenchymal Stem Cell,Mesenchymal Stem Cells, Adipose-Derived,Mesenchymal Stromal Cells, Multipotent,Multipotent Bone Marrow Stromal Cells,Multipotent Mesenchymal Stromal Cells,Stem Cells, Mesenchymal,Wharton Jelly Cells,Wharton's Jelly Cells,Adipose Derived Mesenchymal Stem Cell,Adipose Derived Mesenchymal Stem Cells,Adipose Derived Mesenchymal Stromal Cells,Adipose Tissue Derived Mesenchymal Stem Cell,Adipose Tissue Derived Mesenchymal Stem Cells,Adipose Tissue Derived Mesenchymal Stromal Cell,Adipose Tissue Derived Mesenchymal Stromal Cells,Mesenchymal Stem Cells, Adipose Derived,Progenitor Cell, Mesenchymal,Progenitor Cells, Mesenchymal,Stem Cell, Mesenchymal,Stromal Cell, Mesenchymal,Stromal Cells, Mesenchymal,Wharton's Jelly Cell,Whartons Jelly Cells
D018920 Coculture Techniques A technique of culturing mixed cell types in vitro to allow their synergistic or antagonistic interactions, such as on CELL DIFFERENTIATION or APOPTOSIS. Coculture can be of different types of cells, tissues, or organs from normal or disease states. Cocultivation,Co-culture,Coculture,Co culture,Co-cultures,Cocultivations,Coculture Technique,Cocultures

Related Publications

Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
January 2020, Stem cells international,
Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
February 2020, Journal of assisted reproduction and genetics,
Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
July 2005, Cell research,
Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
March 2013, Stem cells and development,
Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
March 2016, Cytotherapy,
Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
September 2019, Life sciences,
Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
October 2011, Fertility and sterility,
Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
August 2020, Molecular medicine reports,
Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
November 2016, International journal of stem cells,
Cheng-Xiao Lv, and Hua Duan, and Sha Wang, and Lu Gan, and Qian Xu
August 2015, Zhonghua yi xue za zhi,
Copied contents to your clipboard!