Reevaluating the Role of Persistent Neural Activity in Short-Term Memory. 2020

Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
Department of Neurobiology, The University of Chicago, Chicago, IL, USA. Electronic address: nicolas.masse@gmail.com.

A traditional view of short-term working memory (STM) is that task-relevant information is maintained 'online' in persistent spiking activity. However, recent experimental and modeling studies have begun to question this long-held belief. In this review, we discuss new evidence demonstrating that information can be 'silently' maintained via short-term synaptic plasticity (STSP) without the need for persistent activity. We discuss how the neural mechanisms underlying STM are inextricably linked with the cognitive demands of the task, such that the passive maintenance and the active manipulation of information are subserved differently in the brain. Together, these recent findings point towards a more nuanced view of STM in which multiple substrates work in concert to support our ability to temporarily maintain and manipulate information.

UI MeSH Term Description Entries
D008570 Memory, Short-Term Remembrance of information for a few seconds to hours. Immediate Recall,Memory, Immediate,Working Memory,Memory, Shortterm,Immediate Memories,Immediate Memory,Immediate Recalls,Memories, Immediate,Memories, Short-Term,Memories, Shortterm,Memory, Short Term,Recall, Immediate,Recalls, Immediate,Short-Term Memories,Short-Term Memory,Shortterm Memories,Shortterm Memory,Working Memories
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
February 2015, Neuron,
Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
February 2014, Trends in cognitive sciences,
Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
January 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
July 2021, Brain and cognition,
Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
July 2013, Hippocampus,
Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
December 2014, Brain research,
Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
April 2004, Physical review letters,
Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
January 2024, PloS one,
Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
October 2021, Journal of neuroengineering and rehabilitation,
Nicolas Y Masse, and Matthew C Rosen, and David J Freedman
September 2008, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!