Dose Gradient Index for Stereotactic Radiosurgery/Radiation Therapy. 2020

Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
Department of Radiation Oncology, Minnesota Oncology, Minneapolis, Minnesota.

Steep dose falloff outside of tumors is a hallmark of stereotactic radiosurgery (SRS) and radiation therapy (SRT). Dose gradient index (DGI) quantifies the dose drop off. Tables of DGIs versus target volumes have been published for body sites, but none is available for brain. This study recommends guidelines for DGIs for brain SRS/SRT treatments based on clinical CyberKnife (CK) cases. Four hundred ninety-five plans for patients with central nervous system tumors treated with CK at our institution between March 2015 and May 2018 were analyzed. The CK treatment planning system MultiPlan was used for planning. SRS/SRT plans were stratified into 6 groups by tumor size (Group I [0-1 cm3], II [1.0-3.0 cm3], III [3.0-5.0 cm3], IV [5.0-10.0 cm3], V [10.0-15.0 cm3], and VI [15.0-40.0 cm3]). Ideal and minimally acceptable DGIs were determined for each size group. To evaluate the effect of target shape on DGI criteria, the plans were divided into 4 target shape groups: (1) homogeneous shape (circular), (2) adjacent to radiosensitive organs at risk (adjacent), (3) irregularly shaped (irregular), and (4) multiple target plans (multilesion). The mean for each target size group was defined as the ideal DGI. Minimally acceptable DGI criteria are specified to reject the lowest 10% of cases. The minimal acceptable DGIs were 83 (Group I), 72 (II), 65 (III), 58 (IV), 52 (V), and 35 (VI). The ideal DGI is designated to evaluate SRS/SRT plans for homogeneous circular lesions, whereas minimal DGI is chosen to assess the plans for irregular, adjacent to organs at risk, and multilesions. SRS/SRT plans with higher DGI values are correlated with lower irradiated normal tissue volumes. This study provides a table of DGIs for brain SRS/SRT treatments as a tool for assessing the quality of intracranial SRS/SRT plans. DGI guidelines support SRS/SRT planning that results in lower risk of radionecrosis.

UI MeSH Term Description Entries
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D016634 Radiosurgery A radiological stereotactic technique developed for cutting or destroying tissue by high doses of radiation in place of surgical incisions. It was originally developed for neurosurgery on structures in the brain and its use gradually spread to radiation surgery on extracranial structures as well. The usual rigid needles or probes of stereotactic surgery are replaced with beams of ionizing radiation directed toward a target so as to achieve local tissue destruction. Gamma Knife Radiosurgery,Linear Accelerator Radiosurgery,Stereotactic Body Radiotherapy,Stereotactic Radiosurgery,CyberKnife Radiosurgery,LINAC Radiosurgery,Radiosurgery, Gamma Knife,Radiosurgery, Linear Accelerator,Radiosurgery, Stereotactic,Stereotactic Radiation,Stereotactic Radiation Therapy,CyberKnife Radiosurgeries,Gamma Knife Radiosurgeries,LINAC Radiosurgeries,Linear Accelerator Radiosurgeries,Radiation Therapy, Stereotactic,Radiation, Stereotactic,Radiosurgery, CyberKnife,Radiosurgery, LINAC,Radiotherapy, Stereotactic Body,Stereotactic Body Radiotherapies,Stereotactic Radiation Therapies,Stereotactic Radiations,Stereotactic Radiosurgeries,Therapy, Stereotactic Radiation
D017408 Guidelines as Topic Works about a systematic statement of policy rules or principles. Guidelines may be developed by government agencies at any level, institutions, professional societies, governing boards, or by convening expert panels. For guidelines in the field of health care and clinical medicine, PRACTICE GUIDELINES AS TOPIC is available. Guidelines as Topics
D058958 Organs at Risk Organs which might be damaged during exposure to a toxin or to some form of therapy. It most frequently refers to healthy organs located in the radiation field during radiation therapy. Organs at Risks,Risk, Organs at,Risks, Organs at,at Risk, Organs,at Risks, Organs
D020266 Radiotherapy, Conformal A therapy using IONIZING RADIATION where there is improved dose homogeneity within the tumor and reduced dosage to uninvolved structures. The precise shaping of dose distribution is achieved via the use of computer-controlled multileaf collimators. Conformal Radiotherapy,3-D Conformal Radiotherapy,Three-Dimensional Conformal Radiotherapy,3-D Conformal Radiotherapies,Conformal Radiotherapies,Conformal Radiotherapies, 3-D,Conformal Radiotherapies, Three-Dimensional,Conformal Radiotherapy, 3-D,Conformal Radiotherapy, Three-Dimensional,Radiotherapies, 3-D Conformal,Radiotherapies, Conformal,Radiotherapies, Three-Dimensional Conformal,Radiotherapy, 3-D Conformal,Radiotherapy, Three-Dimensional Conformal,Three Dimensional Conformal Radiotherapy,Three-Dimensional Conformal Radiotherapies

Related Publications

Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
January 1993, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
January 1994, Stereotactic and functional neurosurgery,
Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
April 2006, Seminars in radiation oncology,
Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
January 2007, Expert review of neurotherapeutics,
Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
January 2011, Journal of radiation research,
Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
April 2013, Clinical oncology (Royal College of Radiologists (Great Britain)),
Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
December 2010, Technology in cancer research & treatment,
Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
January 2013, Frontiers in oncology,
Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
May 2017, International journal of radiation oncology, biology, physics,
Tatsiana A Reynolds, and Andrew R Jensen, and Ellen E Bellairs, and Mustafa Ozer
December 2017, Future oncology (London, England),
Copied contents to your clipboard!