High-affinity SV40 T-antigen binding sites in the human genome. 1988

C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany.

We describe two different approaches to isolate human genomic sequences possessing high-affinity binding sites for the simian virus 40 (SV40) large T antigen. First, SV40 T antigen was added to Sau3A-restricted human DNA; the resulting T-antigen-DNA complexes were collected after repeated passages through nitrocellulose filters. The second approach involves the specific immunoprecipitation of chromatin fragments, generated by Sau3A treatment of nuclear chromatin from SV40-transformed human cells. The DNA fragments obtained were cloned in plasmid vectors for further investigation. Using the filter binding approach we isolated four different fragments with high-affinity binding sites. The binding site in one fragment was related to the strong T-antigen binding site I in the SV40 genome. The other three fragments contained multiple recognition pentamers, GA(G)GGC. Only one fragment with a high-affinity binding site was identified among the immunoprecipitable chromatin fragments. This DNA fragment belongs to the L1 family of human repetitive DNA. We present evidence suggesting that a significant fraction of human L1 elements possesses T-antigen binding sites. L1-related sequences appear as extrachromosomal elements in an SV40-transformed human cell line, and the amount of extrachromosomal L1 DNA was found to increase after fusion of transformed cells to permissive monkey cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003852 Deoxyribonucleoproteins Proteins conjugated with deoxyribonucleic acids (DNA) or specific DNA.
D005374 Filtration A process of separating particulate matter from a fluid, such as air or a liquid, by passing the fluid carrier through a medium that will not pass the particulates. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Filtrations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
August 1976, Cell,
C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
January 1997, Brain tumor pathology,
C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
December 1991, Gene,
C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
January 1986, Biochemical and biophysical research communications,
C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
September 1985, Nucleic acids research,
C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
March 1991, Oncogene,
C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
November 1987, Virology,
C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
December 1990, Shi yan sheng wu xue bao,
C Gruss, and E Wetzel, and M Baack, and U Mock, and R Knippers
July 2000, Nucleic acids research,
Copied contents to your clipboard!