Influence of methionine biosynthesis on serine transhydroxymethylase regulation in Salmonella typhimurium LT2. 1977

G V Stauffer, and J E Brenchley

The enzyme serine transhydroxymethylase (EC 2.1.2.1; L-serine:tetrahydrofolate-5,10-hydroxymethyltransferase) is responsible both for the synthesis of glycine from serine and production of the 5,10-methylenetetrahydrofolate necessary as a methyl donor for methionine synthesis. Two mutants selected for alteration in serine transhydroxymethylase regulation also have phenotypes characteristic of metK (methionine regulatory) mutants, including ethionine, norleucine, and alpha-methylmethionine resistance and reduced levels of S-adenosylmethionine synthetase (EC 2.5.1.6; adenosine 5'-triphosphate:L-methionine S-adenosyltransferase) activity. Because this suggested the existence of a common regulatory component, the regulation of serine transhydroxymethylase was examined in other methionine regulatory mutants (metK and metJ mutants). Normally, serine transhydroxymethylase levels are repressed three- to sixfold in cells grown in the presence of serine, glycine, methionine, adenine, guanine, and thymine. This does not occur in metK and metJ mutants; thus, these mutations do affect the regulation of both serine transhydroxymethylase and the methionine biosynthetic enzymes. Lesions in the metK gene have been reported to reduce S-adenosylmethionine synthetase levels. To determine whether the metK gene actually encodes for S-adenosylmethionine synthetase, a mutant was characterized in which this enzyme has a 26-fold increased apparent Km for methionine. This mutation causes a phenotype associated with metK mutants and is cotransducible with the serA locus at the same frequency as metK lesions. Thus, the affect of metK mutations on the regulation of glycine and methionine synthesis in Salmonella typhimurium appears to be due to either an altered S-adenosylmethionine synthetase or altered S-adenosylmethionine pools.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008716 Methionine Adenosyltransferase An enzyme that catalyzes the synthesis of S-adenosylmethionine from methionine and ATP. EC 2.5.1.6. S-Adenosylmethionine Synthetase,ATP-Methionine S-Adenosyltransferase,ATP Methionine S Adenosyltransferase,Adenosyltransferase, Methionine,S Adenosylmethionine Synthetase,S-Adenosyltransferase, ATP-Methionine,Synthetase, S-Adenosylmethionine
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004794 Enzyme Repression The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. Repression, Enzyme
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine
D012696 Glycine Hydroxymethyltransferase A pyridoxal phosphate enzyme that catalyzes the reaction of glycine and 5,10-methylene-tetrahydrofolate to form serine. It also catalyzes the reaction of glycine with acetaldehyde to form L-threonine. EC 2.1.2.1. Serine Aldolase,Serine Hydroxymethylase,Serine Hydroxymethyltransferase,Serine Transhydroxymethylase,Threonine Aldolase,Allothreonine Aldolase,Aldolase, Allothreonine,Aldolase, Serine,Aldolase, Threonine,Hydroxymethylase, Serine,Hydroxymethyltransferase, Glycine,Hydroxymethyltransferase, Serine,Transhydroxymethylase, Serine
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic

Related Publications

G V Stauffer, and J E Brenchley
March 1969, Journal of bacteriology,
G V Stauffer, and J E Brenchley
January 1982, Molecular & general genetics : MGG,
G V Stauffer, and J E Brenchley
June 1991, Canadian journal of microbiology,
G V Stauffer, and J E Brenchley
January 1990, BioTechniques,
G V Stauffer, and J E Brenchley
February 1981, Journal of bacteriology,
G V Stauffer, and J E Brenchley
July 1979, Journal of bacteriology,
G V Stauffer, and J E Brenchley
March 1973, Molecular & general genetics : MGG,
G V Stauffer, and J E Brenchley
June 1963, Journal of bacteriology,
G V Stauffer, and J E Brenchley
April 2003, Cell biology and toxicology,
G V Stauffer, and J E Brenchley
June 1982, Mutation research,
Copied contents to your clipboard!