Teratogenic antibody internalization by rat visceral yolk-sac endoderm in vitro: an ultrastructural colloidal gold tracer study. 1988

C C Leung, and C L Yan, and B Cheewatrakoolpong
Department of Anatomy, UMDNJ-New Jersey Medical School, Newark 07103.

Previous work from our laboratory has demonstrated that specific rabbit immunoglobulins G (IgG) against a glycoprotein antigen of rat kidney proximal tubule or a cross-reacting visceral yolk-sac endodermal cell antigen will induce abnormal embryonic development when they are injected into pregnant rats during the period of organogenesis. It has been proposed that these antibodies may induce embryopathy by interfering with functions of the visceral yolk-sac placenta, an important organ providing nutrients to the embryo at this stage of development. In order to gain some insight into the underlying pathogenic mechanism(s) in which specific teratogenic IgG may interfere with visceral yolk-sac functions, we examined the uptake of these teratogenic IgG by the visceral yolk-sac endodermal cells at the electron microscopic level. The results demonstrated that teratogenic rabbit IgG specifically localized on the fuzzy coat of the external apical cell membrane of the visceral yolk-sac endoderm at the intermicrovillous region. Within 5 min, the IgG were rapidly internalized via coated pits and micropinocytic vesicles. Within 30 min, an increasing proportion of gold particles appeared within uncoated vesicles or vacuoles of various sizes; most of the gold particles were in close proximity to the inner membranous lining of the vesicles. Similar findings were observed after 1- or 2-hr incubation. After 24- to 48-hr culture, however, the gold particles appeared to have dissociated from the inner surface of the vesicle membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D006046 Gold A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D015017 Yolk Sac The first of four extra-embryonic membranes to form during EMBRYOGENESIS. In REPTILES and BIRDS, it arises from endoderm and mesoderm to incorporate the EGG YOLK into the DIGESTIVE TRACT for nourishing the embryo. In placental MAMMALS, its nutritional function is vestigial; however, it is the source of INTESTINAL MUCOSA; BLOOD CELLS; and GERM CELLS. It is sometimes called the vitelline sac, which should not be confused with the VITELLINE MEMBRANE of the egg. Vitelline Sac of Embryo,Embryo Vitelline Sac,Embryo Vitelline Sacs,Sac, Yolk,Sacs, Yolk,Yolk Sacs

Related Publications

C C Leung, and C L Yan, and B Cheewatrakoolpong
June 1984, Journal of embryology and experimental morphology,
C C Leung, and C L Yan, and B Cheewatrakoolpong
June 1991, Teratology,
C C Leung, and C L Yan, and B Cheewatrakoolpong
May 1983, Pediatric research,
C C Leung, and C L Yan, and B Cheewatrakoolpong
January 1984, Histochemistry,
C C Leung, and C L Yan, and B Cheewatrakoolpong
May 1982, Journal of reproduction and fertility,
C C Leung, and C L Yan, and B Cheewatrakoolpong
January 1985, Histochemistry,
C C Leung, and C L Yan, and B Cheewatrakoolpong
January 1986, Histochemistry,
C C Leung, and C L Yan, and B Cheewatrakoolpong
November 1976, Human pathology,
C C Leung, and C L Yan, and B Cheewatrakoolpong
October 1977, Cell and tissue research,
C C Leung, and C L Yan, and B Cheewatrakoolpong
November 1996, Blood,
Copied contents to your clipboard!